1 |
TIAN L, BI W, LIU X, et al.. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions[J]. Acta Physiol. Plant., 2019, 41(5): 1-14.
|
2 |
KUMAR P, PAL M, JOSHI R, et al.. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage[J]. Physiol. Mol. Biol. Plants, 2013, 19(2):209-220.
|
3 |
KAUR G, VIKAL Y, KAUR L, et al.. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis[J/OL]. Plant Sci., 2021, 304: 110823[2023-03-15]. .
|
4 |
汪贵斌, 蔡金峰, 何肖华. 涝渍胁迫对喜树幼苗形态和生理的影响[J]. 植物生态学报, 2009, 33(1): 134-140.
|
5 |
张往祥, 张晓燕, 曹福亮, 等. 涝渍胁迫下3个树种幼苗生理特性的响应[J]. 南京林业大学学报(自然科学版), 2011, 35(5): 11-15.
|
6 |
郑佳秋, 顾闽峰, 郭军, 等. 涝渍胁迫下辣椒的生理特性[J]. 江苏农业学报, 2012, 28(3): 617-621.
|
7 |
周鑫, 胡红玲, 胡庭兴, 等. 涝渍胁迫对桢楠幼树生长及光合生理的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9): 67-74+80.
|
8 |
周琴, 董艳, 卞雅姣, 等. 不同渍水时间对苗期和花期大豆生长及碳氮代谢的影响[J]. 应用生态学报, 2012, 23(6): 1577-1584.
|
9 |
PENG Y Q, ZHU J, LI W J, et al. Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress[J/OL]. Sci. Hortic., 2019, 261(2): 108977[2023-03-15]. .
|
10 |
周鑫, 喻秀艳, 张昭昇, 等. 涝渍胁迫对桢楠幼树不同功能根系生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12): 95-103.
|
11 |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
12 |
郑炳松. 现代植物生理生化研究技术[M]. 北京: 气象出版社, 2006.
|
13 |
孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008.
|
14 |
汤绍虎, 罗充. 植物生理学实验教程[M]. 重庆: 西南师范大学出版社, 2012.
|
15 |
郝建军, 康宗利, 于洋. 植物生理学实验技术[M]. 北京: 化学工业出版社, 2007.
|
16 |
张宪政. 作物生理研究法[M]. 北京: 农业出版社, 1992.
|
17 |
李丹竹, 张强, 徐倩, 等. 渍水胁迫对不同秋眠级紫花苜蓿苗期根系形态的影响[J]. 草地学报, 2020, 28(2): 420-428.
|
18 |
宋晓慧, 张智杰, 李春光, 等. 淹水时间对不同耐涝性大豆品种苗期根部形态和叶部生理指标的影响[J]. 大豆科学, 2014, 33(1): 70-72+102.
|
19 |
PEZESHKI S R. Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions[J]. Trees, 1991, 5(3): 180-186.
|
20 |
BANSAL R, SRIVASTAVA J P. Effect of waterlogging on root anatomy and nitrogen distribution in pigeonpea (Cajanus cajan (L.) Millsp.)[J]. Indian J. Plant Physiol., 2017, 22(1): 130-134.
|
21 |
季艳林, 赖慧灵, 郑茹萍, 等. 植物涝渍胁迫应激机制研究进展[J]. 生物技术进展, 2016, 6(1): 1-5.
|
22 |
张怡, 路铁刚. 植物中的活性氧研究概述[J]. 生物技术进展, 2011, 1(4): 242-248.
|
23 |
TANG B, XU S Z, ZOU X L, et al.. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage[J]. Agric. Sci. Chin., 2010, 9(5): 651-661.
|
24 |
BANSAL R, SRIVASTAVA J P. Antioxidative defense system in pigeonpea roots under waterlogging stress[J]. Acta Physiol. Plant., 2012, 34(2): 515-522.
|
25 |
JIA L T, QIN X, LYU D G, et al.. ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions[J/OL]. Sci. Horticul., 2019, 257(17):108647[2023-03-15]. .
|
26 |
DING L N, LIU R, LI T, et al.. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant[J/OL]. Biotechnol. Biofuels Bioprod., 2022, 15(1): 55[2023-04-30]. .
|
27 |
PHUKAN U J, MISHRA S, TIMBRE K, et al.. Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress[J]. Protoplasma, 2014, 251(3): 603-614.
|
28 |
AHSAN N, LEE D G, LEE S H, et al.. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots[J]. Plant Soil, 2007, 295(1-2): 37-51.
|
29 |
LINDOKUHLE T, KUBEN N, GONASAGERAN N. Morphological and physiological responses of Arundo donax and Phragmites australis to waterlogging stress[J/OL]. Flora, 2021, 279: 151816[2021-04-18]. .
|
30 |
STEFFENS D, HUTSCH B W, ESCHHOLZ T, et al.. Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity[J]. Plant Soil Environ., 2005, 64(12): 545-552.
|
31 |
SCHAT H. A comparative ecophysiological study on the effects of waterlogging and submergence on dune slack plants: growth, survival and mineral nutrition in sand culture experiments[J]. Oecologia, 1984, 62(2): 279-286.
|
32 |
王琼, 张春雷, 李光明, 等. 渍水胁迫对油菜根系形态与生理活性的影响[J]. 中国油料作物学报, 2012, 34(2): 157-162.
|
33 |
李金才, 魏凤珍, 王成雨, 等. 孕穗期土壤渍水逆境对冬小麦根系衰老的影响[J]. 作物学报, 2006, 32(9): 1355-1360.
|
34 |
陈芳清, 郭成圆, 王传华, 等. 水淹对秋华柳幼苗生理生态特征的影响[J]. 应用生态学报, 2008, 19(6): 1229-1233.
|
35 |
XU H, VAVILIN D, VERMAAS W. Chlorophyll b can serve as the major pigment in functional photosystem Ⅱ complexes of cyanobacteria[J]. Proc. Natl. Acad. Sci. USA, 2001, 98(24): 14168-14173.
|
36 |
陈玉凤, 谭飞, 胡红玲, 等. 水淹胁迫对桢楠幼树生长及光合生理特性的影响[J]. 生态与农村环境学报, 2018, 34(3): 224-231.
|
37 |
王树凤, 陈益泰, 孙海菁, 等. 8种美国引进树种苗期水涝胁迫的响应差异[J]. 安徽农业大学学报, 2009, 36(4): 645-650.
|
38 |
WILLEKENS H, VAN CAMP W, VAN MONTAGU M, et al.. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.[J]. Plant Physiol., 1994, 106(3): 1007-1014.
|