生物技术进展 ›› 2022, Vol. 12 ›› Issue (4): 549-558.DOI: 10.19586/j.2095-2341.2022.0009
李力群(), 孙志康, 郝捷(
), 季嫱, 李选文, 吴晗, 吴娜, 郑超, 杨婧
收稿日期:
2022-01-25
接受日期:
2022-03-09
出版日期:
2022-07-25
发布日期:
2022-08-10
通讯作者:
郝捷
作者简介:
李力群 E-mail:mk_jszx@sina.com;
Liqun LI(), Zhikang SUN, Jie HAO(
), Qiang JI, Xuanwen LI, Han WU, Na WU, Chao ZHENG, Jing YANG
Received:
2022-01-25
Accepted:
2022-03-09
Online:
2022-07-25
Published:
2022-08-10
Contact:
Jie HAO
摘要:
果胶酶是水解酶家族成员,也是生物技术领域的重要酶,其在全球工业酶市场中所占份额约为25%。果胶酶在工业生产中应用广泛,如植物纤维的脱胶、茶和咖啡的发酵、废水处理、纸浆漂白和动物饲料生产等。在果胶酶的天然来源中,由于微生物具有独特的理化性质,最常被用以生产果胶酶。然而,与许多其他工业酶一样,果胶酶也存在野生菌株产量低、工业生产率低等制约因素,因此,目前果胶酶的研究重点主要集中在如何提高工业规模的生产水平。主要介绍了果胶酶的天然来源,以及在这些来源的基础上通过基因工程改造以获得果胶酶高效表达的最新策略,并概括总结了果胶酶发酵工艺和工业应用,以期为生产具有高活性的果胶酶,提高工业生产的效益奠定理论基础。
中图分类号:
李力群, 孙志康, 郝捷, 季嫱, 李选文, 吴晗, 吴娜, 郑超, 杨婧. 果胶酶生产及工业应用进展[J]. 生物技术进展, 2022, 12(4): 549-558.
Liqun LI, Zhikang SUN, Jie HAO, Qiang JI, Xuanwen LI, Han WU, Na WU, Chao ZHENG, Jing YANG. Progress on Production and Industrial Application of Pectinase[J]. Current Biotechnology, 2022, 12(4): 549-558.
类别 | 名称 | 来源 | 形态学/生理学特征 | 参考文献 |
---|---|---|---|---|
细菌 | 嗜碱芽孢杆菌(Bacillus pseudofirmus) | 温泉 | 革兰氏阳性,好氧型,有芽孢 | [ |
类芽孢杆菌(Paenibacillus sp.) | 土壤 | 革兰氏阳性,杆状,有芽孢 | [ | |
地衣芽孢杆菌(Bacillus licheniformis) | 温泉 | 革兰氏阳性,杆状,有芽孢 | [ | |
克劳氏芽孢杆菌(Bacillus clausii) | 碱湖 | 革兰氏阳性,杆状,有孢子 | [ | |
索诺拉沙漠芽孢杆菌(Bacillus sonorensis) | 腐败的水果、蔬菜 | 革兰氏阳性,杆状,有孢子 | [ | |
霉菌 | 一种耐冷的地霉菌(Geomyces species) | 南极洲 | 有分枝的丝状真菌分生孢子 | [ |
塔宾曲霉(Aspergillus tubingensis) | 葡萄园土壤 | 有黑色孢子的丝状真菌 | [ | |
泡盛曲霉(Aspergillus awamori) | 农业废弃物 | 有分生孢子的丝状真菌 | [ | |
黄曲霉(Aspergillus flavus) | 土壤、腐烂的橘子皮 | 有分生孢子的丝状真菌 | [ | |
雪白曲霉(Aspergillus niveus) | 芒果 | 有分生孢子的丝状真菌 | [ | |
酵母 | 马克斯克鲁维酵母(Kluveromyces marxianus) | 葡萄汁 | 球性、椭圆形或圆柱形 | [ |
酿酒酵母(Saccharomyces cerevisiae) | 葡萄皮 | 单倍体和二倍体形式同时存在 | [ | |
异常威克汉姆酵母(Wickerhanomyces anomalus) | 柑橘果皮 | 有球形或椭圆形的假菌丝 | [ | |
尼泊尔德巴利酵母(Debaryomyces nepalensis) | 腐败的苹果 | 有子囊孢子 | [ |
表1 果胶酶主要微生物来源
Table 1 Main microbial sources of pectinase
类别 | 名称 | 来源 | 形态学/生理学特征 | 参考文献 |
---|---|---|---|---|
细菌 | 嗜碱芽孢杆菌(Bacillus pseudofirmus) | 温泉 | 革兰氏阳性,好氧型,有芽孢 | [ |
类芽孢杆菌(Paenibacillus sp.) | 土壤 | 革兰氏阳性,杆状,有芽孢 | [ | |
地衣芽孢杆菌(Bacillus licheniformis) | 温泉 | 革兰氏阳性,杆状,有芽孢 | [ | |
克劳氏芽孢杆菌(Bacillus clausii) | 碱湖 | 革兰氏阳性,杆状,有孢子 | [ | |
索诺拉沙漠芽孢杆菌(Bacillus sonorensis) | 腐败的水果、蔬菜 | 革兰氏阳性,杆状,有孢子 | [ | |
霉菌 | 一种耐冷的地霉菌(Geomyces species) | 南极洲 | 有分枝的丝状真菌分生孢子 | [ |
塔宾曲霉(Aspergillus tubingensis) | 葡萄园土壤 | 有黑色孢子的丝状真菌 | [ | |
泡盛曲霉(Aspergillus awamori) | 农业废弃物 | 有分生孢子的丝状真菌 | [ | |
黄曲霉(Aspergillus flavus) | 土壤、腐烂的橘子皮 | 有分生孢子的丝状真菌 | [ | |
雪白曲霉(Aspergillus niveus) | 芒果 | 有分生孢子的丝状真菌 | [ | |
酵母 | 马克斯克鲁维酵母(Kluveromyces marxianus) | 葡萄汁 | 球性、椭圆形或圆柱形 | [ |
酿酒酵母(Saccharomyces cerevisiae) | 葡萄皮 | 单倍体和二倍体形式同时存在 | [ | |
异常威克汉姆酵母(Wickerhanomyces anomalus) | 柑橘果皮 | 有球形或椭圆形的假菌丝 | [ | |
尼泊尔德巴利酵母(Debaryomyces nepalensis) | 腐败的苹果 | 有子囊孢子 | [ |
特征 | 液体深层发酵 | 固态发酵 |
---|---|---|
微生物来源 | 细菌菌株 | 大部分真菌 |
菌种接种比例 | 低 | 高 |
发酵环境 | 不断搅动的 | 稳定静止的 |
培养基质中营养物质的分布 | 均匀 | 不均匀 |
需氧量 | 高 | 低 |
用水量 | 用水量大 | 有限的 |
下游加工工艺 | 步骤繁多 | 简单 |
能耗要求 | 高 | 低 |
生产成本 | 高 | 低 |
反应容器体积 | 大 | 小 |
生产效率 | 高 | 低 |
表2 液体深层发酵和固态发酵的相关特征比较[2, 17, 40-42]
Table 2 Comparison of relevant characteristics between submerged fermentation and solid state fermentation[2, 17, 40-42]
特征 | 液体深层发酵 | 固态发酵 |
---|---|---|
微生物来源 | 细菌菌株 | 大部分真菌 |
菌种接种比例 | 低 | 高 |
发酵环境 | 不断搅动的 | 稳定静止的 |
培养基质中营养物质的分布 | 均匀 | 不均匀 |
需氧量 | 高 | 低 |
用水量 | 用水量大 | 有限的 |
下游加工工艺 | 步骤繁多 | 简单 |
能耗要求 | 高 | 低 |
生产成本 | 高 | 低 |
反应容器体积 | 大 | 小 |
生产效率 | 高 | 低 |
1 | 李祖明,何立千,李鸿玉,等.碱性果胶酶的应用进展[J].食品科技,2007,32(8):4. |
2 | KOHLI P, GUPTA R. Alkaline pectinases: a review[J]. Biocatal. Agric. Biotechnol., 2015, 4(3): 279-285. |
3 | SARANRAJ P, NAIDU M A. Microbial pectinases: a review[J]. Global J. Tradit. Med. Syst., 2014, 3: 1-9. |
4 | OLUOCH K R, OKANYA P W, HATTI-KAUL R, et al.. Protease-, pectinase- and amylase- producing bacteria from a kenyan soda lake[J]. Open Biotechnol. J., 2018, 12(1): 33-45. |
5 | EL-SAYED M H, ELSEHEMY I. Paenibacillus sp. strain NBR-10, a thermophilic soil-isolated bacterium with thermo-alkali stable pectinase activity[J]. J. Appl. Environ. Biol. Sci., 2017, 7(12): 9-19. |
6 | JADHAV S R, PATHAK A P. Production and characterization of a thermo-pH stable pectinase from Bacillus licheniformis UNP-1: a novel strain isolated from Unapdev hot spring[J]. Indian J. Mar. Sci., 2019, 48(5): 670-677. |
7 | HUANG D M, SONG Y Y, LIU Y L, et al.. A new strain of Aspergillus tubingensis for high-activity pectinase production[J]. Braz. J. Microbiol., 2019, 50: 53-65. |
8 | MOHANDAS A, SINDHU R, BINOD P, et al.. Production of pectinase from Bacillus sonorensis MPTD1[J]. Food Technol. Biotech., 2018, 56: 110-116. |
9 | GABRIELA P, CARLOS G D, INMACULADA V, et al.. Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges[J/OL]. Biol. Res., 2018, 51: 28[2021-11-30]. . |
10 | ABBASI H, MORTAZAVIPUR S R. Production of exopolygalacturonase from wheat flour by Aspergillus awamori in submerged and surface culture fermentation[J]. Afr. J. Plant Sci., 2011, 5(4): 226-232. |
11 | ADELEKE A J, ODUNFA S A, OLANBIWONNINU A, et al.. Production of cellulase and pectinase from organge peels by fungi[J]. Nat. Sci. Sleep, 2012, 10(5): 107-112 |
12 | MALLER A, DAMÁSIO A R L, SILVA T M D, et al.. Biotechnological potential of agro-industrial wastes as a carbon source to thermostable polygalacturonase production in Aspergillus niveus [J]. Enzyme Res., 2011, 2011: 1-6. |
13 | WILLIAMS D L, SCHÜCKEL J, VIVIER M A, et al.. Grape pomace fermentation and cell wall degradation by Kluyveromyces marxianus Y885[J/OL]. Biochem. Eng. J., 2019, 150: 107282[2021-12-20]. . |
14 | ARÉVALO-VILLENA M, FERNÁNDEZ M, LÓPEZ J, et al.. Pectinases yeast production using grape skin as carbon source[J]. Adv. Biosci. Biotechnol., 2011, 2: 89-96. |
15 | MARTOS M A, ZUBRESKI E R, GARRO O A, et al.. Production of pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels[J]. Biol. Res. Int., 2013, 2013: 1-7. |
16 | GUMMADI S N, KUMAR D S. Batch and fed batch production of pectin lyase and pectate lyase by novel strain Debaryomyces nepalensis in bioreactor[J]. Bioresour. Technol., 2008, 99(4): 874-881. |
17 | FAA A, HNB B, MB C. Recent advances in the production strategies of microbial pectinases—a review[J]. Int. J. Biol. Macromol., 2019, 122: 1017-1026. |
18 | LANG C, DORNENBURG H. Perspectives in the biological function and the technological application of polygalacturonases[J]. Appl. Microbiol. Biot., 2000, 53(4): 366-375. |
19 | FAVELA T E, VOLKE S T, VINIEGRA G G. Production of hydrolytic depolymerising pectinases[J]. Food Technol. Biotech., 2006, 44(2): 221-227. |
20 | ZHOU C, XUE Y, MA Y. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming[J]. Appl. Microbiol. Biotech., 2017, 101(9): 3663-3676. |
21 | AHLAWAT S, MANDHAN R P, DHIMAN S S, et al.. Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry[J]. Appl. Biochem. Biotech., 2008, 149: 287-293. |
22 | KAUR G, KUMAR S, SATYANARAYANA T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis[J]. Bioresource. Technol., 2004, 94(3): 239-243. |
23 | KHATRI B P, BHATTARAI T, SHRESTHA S, et al.. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal[J/OL]. SpringerPlus, 2015, 4(1): 488[2021-12-15]. . |
24 | OSKAY M, YALÇIN H. Screening of yeast strains for pectinolytic activity: effects of different carbon and nitrogen sources in submerged fermentations[J]. Online J. Bio. Sci., 2015, 15(3): 89-96. |
25 | MCALLAN J W, ADAMS J B. The significance of pectinase in plant penetration by aphids[J]. Can. J. Zool., 1961, 39(3): 305-310. |
26 | ADAMS J B, MCALLAN J W. Pectinase in certain insects[J]. Can. J. Zool., 1958, 36(3): 305-308. |
27 | HABRYLO O, EVANGELISTA D E, CASTILHO P V, et al.. The pectinases from Sphenophorus levis: potential for biotechnological applications[J]. Int. J. Biol. Macromol., 2018, 112: 499-508. |
28 | YIN L B, ZHANG C F, XIA Q L, et al.. Enhancement of pectinase production by ultraviolet irradiation and diethyl sulfate mutagenesis of a Fusarium oxysporum isolate[J/OL]. Genet. Mol. Res., 2016, 15(3): 1-7. |
29 | TEIXEIRA J A, GONÇALVES D B, QUEIROZ M V D, et al.. Improved pectinase production in Penicillium griseoroseum recombinant strains[J]. J. Appl. Microbiol., 2011, 111(4): 818-825. |
30 | GE C, YOU W, LI R, et al.. Construction of the PG-deficient mutant of Fusarium equiseti by CRISPR/Cas9 and its pathogenicity of pitaya[J]. J. Basic Microb., 2021, 61(8): 686-696. |
31 | ALAZI E, NIU J, OTTO S B, et al.. W361mutation in GaaRR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger [J/OL]. Microbiologyopen, 2019, 8(5): e00732[2022-05-09]. . |
32 | BRÜHLMANN F. Purification and characterization of an extracellular pectate lyase from an Amycolata sp.[J]. Appl. Environ. Microbiol., 1995, 61(10): 3580-3585. |
33 | BEG Q K, BHUSHAN B, KAPOOR M, et al.. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3[J]. J. Ind. Microbiol. Biot., 2000, 24(6): 396-402. |
34 | KAPOOR M, BEG Q K, BHUSHAN B, et al.. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2[J]. Process Biochem., 2000, 36(5): 467-473. |
35 | MADU J O, TORIMIRO N, OKONJI R E, et al.. Physicochemical factors influencing pectinolytic enzyme produced by Bacillus licheniformis under submerged fermentation[J]. Nat. Sci., 2014, 12(8): 110-116. |
36 | BEG Q K, BHUSHAN B, KAPOOR M, et al.. Effect of amino acids on production of xylanase and pectinase from Streptomyces sp. QG-11-3[J]. World J. Microb. Biot., 2000, 16(2): 211-213. |
37 | PANDEY A, SELVAKUMAR P, SOCCOL C R, et al.. Solid state fermentation for the production of industrial enzymes[J]. Curr. Sci. India, 2006, 77(1): 149-162. |
38 | BLANDINO A, IQBALSYAH T, PANDIELLA S, et al.. Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation[J]. Appl. Microbiol. Biot., 2002, 58(2): 164-169. |
39 | MALDONADO M C, SAAD A. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems[J]. J. Ind. Microbiol. Biot., 1998, 20(1): 34-38. |
40 | KAVUTHODI B, SEBASTIAN D. Review on bacterial production of alkaline pectinase with special emphasis on Bacillus species [J]. Biosci. Biotech. Res. Comm., 2018, 11(1): 18-30. |
41 | PATIDAR M K, NIGHOJKAR S, KUMAR A, et al.. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review[J/OL]. 3Biotech, 2018, 8(4): 199[2021-11-19]. . |
42 | NIGHOJKAR A, PATIDAR M K, NIGHOJKAR S. Pectinases: production and applications for fruit juice beverages[M] //GRUMEZESCU A M, HOLBAN A M. Processing and Sustainability of Beverages. London: Woodhead, 2019: 235-273. |
43 | 张强,嵇冶.固定化细胞技术应用于酒精发酵中的研究进展[J].化工进展,2017,36(4):1404-1409. |
44 | 尹莉,乔丽丽,乔瑞平,等.固定化微生物强化生物处理过程的研究进展[J].环保科技,2016,22(5):55-58. |
45 | EJAZ U, AHMED A, SOHAIL M. Statistical optimization of immobilization of yeast cells on corncob for pectinase production[J]. Biocatal. Agric. Biotechnol., 2018, 14: 450-456. |
46 | HANDE D, CANAN T. Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation[J]. J. Sci. Food Agric., 2016, 96: 3575-3582. |
47 | BLANDINO A, IQBALSYAH T, PANDIELLA S, et al.. Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation[J]. Appl. Microbiol. Biot., 2002, 58: 164-169. |
48 | JAHAN N, SHAHID F, AMAN A, et al.. Utilization of agro waste pectin for the production of industrially important polygalacturonase[J/OL]. Heliyon, 2017, 3(6): e00330[2021-11-19]. . |
49 | KUVVET C, UZUNER S, CEKMECELIOGLU D. Improvement of pectinase production by co-culture of Bacillus spp. using apple pomace as a carbon source[J]. Waste Biomass Valori., 2019, 10(5): 1241-1249. |
50 | ZHENG Y X, WANG Y L, ZHANG J R, et al.. Using tobacco waste extract in pre-culture medium to improve xylose utilization for L-lactic acid production from cellulosic waste by Rhizopus oryzae [J]. Bioresour. Technol., 2016, 218: 344-350. |
51 | BATTAGLIA E, BENOIT I, BRINK J V D, et al.. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level[J/OL]. BMC Genomics, 2011, 12: 38[2021-11-19]. . |
52 | ZHENG Y X, WANG Y L, PAN J, et al.. Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content[J]. Bioresour. Technol., 2017, 241: 1138-1144. |
53 | UZUNER S, CEKMECELIOGLU D. Enhanced pectinase production by optimizing fermentation conditions of Bacillus subtilis growing on hazelnut shell hydrolyzate[J]. J. Mol. Catal. B Enzym., 2015, 113: 62-67. |
54 | TAPRE A R, JAIN R K. Pectinases: enzymes for fruit processing industry[J]. Int. Food Res. J., 2014, 21(2): 447-453. |
55 | SANDRI I G, FONTANA R C, BARFKNECHT D M, et al.. Clarification of fruit juices by fungal pectinases[J]. Food Sci. Technol., 2011, 44(10): 2217-2222. |
56 | PASHA K M, ANURADHA P, SUBBARAO D. Applications of pectinases in industrial sector[J]. Int. J. Pure Appl. Sci. Technol., 2013, 16(1): 89-95. |
57 | WEST S. Olive and other edible oils[M]//GODFREY T, WEST S. Industrial Enzymology. New York: Stockholm, 1996: 293-300. |
58 | GRAYSON M, EKORTH D. Kirk-Othmer Encyclopedia of Chemical Technology[M]. New York: Wiley, 1978. |
59 | CARR J G. Tea, coffee and cocoa[M]//WOOD B J B. Microbiology of Fermented Foods. London: Elsevier, 1985: 133-154. |
60 | LI Z M, BAI Z H, ZHANG B G, et al.. Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus clausii and its application in elicitation of plant disease resistance[J]. Appl. Biochem. Biotech., 2012, 167(8): 2241-2256. |
61 | HOONDAL G S, TIWARI R P, TIWARI R, et al.. Microbial alkaline pectinases and their applications: a review[J]. Appl. Microbiol. Biot., 2000, 59(4-5): 409-418. |
62 | HEBEISH A, RAMADAN M A, HASHEM M, et al.. New development for combined bioscouring and bleaching of cotton-based fabrics[J]. Res. J. Text. Appar., 2013, 17(1): 94-103. |
63 | PILNIK W, VORAGEN A G J. Pectic enzymes in fruit and vegetable juice manufacture[M]//NAGODAWITHANA T, REED G. Enzymes in Food Processing. (3rd ed). New York: Academic Press, 1993: 363-399. |
64 | KLUG-SANTNER B G, SCHNITZHOFER W, VRSANSKÁ M, et al.. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2[J]. J. Biotechnol., 2006, 121(3): 390-401. |
65 | SAID S, FONSECA M, SIÉSSERE V. Pectinase production by Penicillium frequentans [J]. World J. Microb. Biot., 1991, 7(6): 607-608. |
66 | GURUCHARANAM K, DESHPANDE K S. Polysaccharides of Curbularia lunata: use in degumming of ramie fibers[J]. Ind. Phytopathol., 1986, 3: 385-389. |
67 | FOULK J A. Pectinolytic enzymes and retting[J]. BioResources, 2008, 3: 155-169. |
68 | REID I, RICARD M. Pectinase in papermaking: solving retention problems in mechanical pulps bleached with hydrogen peroxide[J]. Enzyme Microb. Tech., 2000, 26(2-4): 115-123. |
69 | HITESHI K, CHAUHAN S, GUPTA R. Immobilization of microbial petinases: A review[J]. CIBTech J. Biotech., 2013, 2(4): 37-52. |
70 | 余永茂,高芳馨,张淑华,等.微生物酶发酵低次烟叶初试报告[J].烟草科技,1988,5:16-20. |
71 | 阎克玉,刘凤珠.酶降解烟叶中细胞壁物质[J].生物技术,2001,11(4):19-22. |
72 | 邓国宾,李雪梅,李成斌,等.降果胶菌改善烟叶品质研究[J].烟草科技/烟草工艺,2003,11:17-18. |
73 | ZHANG G, LI S G, XU Y B, et al.. Production of alkaline pectinase: a case study investigating the use of tobacco stalk with the newly isolated strain Bacillus tequilensis CAS-MEI-2-33[J/OL]. BMC Biotechnol., 2019, 19: 45[2022-01-04]. . |
74 | HORIKOSHI K. Enzymes from alkalophiles[M]//FOGARTY W M, KELLY C T. Microbial Enzymes and Biotechnology. Ireland: Elsevier, 1990: 275-295. |
75 | TANABE H, YOSHIHARA K, TAMURA K, et al.. Pretreatment of pectic wastewater from orange canning process by an alkalophilic Bacillus sp.[J]. J. Ferment. Tech., 1987, 65(2): 243-246. |
76 | PETERSEN S. Enzymes to upgrade plant nutrients[J]. Feed Mix, 2001, 9(2): 12-15. |
77 | 谢颂鸥,罗 勇,张利萍,等. 酶制剂在预去渍产品中的应用[J].中国洗涤用品工业,2018,8:43-47. |
78 | BAECK A C, HERBOTS I. Detergent compositions comprising pectin lyase[P]: HU0000506A2, 2000-08-28. |
[1] | 张兆昆,,周文学,李永丽,,胡建华,,刘占英,. 核黄素发酵菌种改造研究进展[J]. 生物技术进展, 2021, 11(1): 54-60. |
[2] | 张清翠,石雅丽,刘安礼,胡建华,李永丽,孙亚超,何可欣,夏婷,鲍彦彬. 外切纤维素酶的研究与应用进展[J]. 生物技术进展, 2020, 10(5): 495-502. |
[3] | 蓝江林,刘波,宋泽琼,史怀,黄素芳. 微生物发酵床养猪技术研究进展[J]. 生物技术进展, 2012, 2(6): 411-416. |
[4] | 郑科,刘正初,段盛文,成莉凤,郑霞,冯湘沅. 果胶酶在麻类脱胶中的应用及其作用机理[J]. 生物技术进展, 2012, 2(6): 404-410. |
[5] | 曹威,周利伟,张伟,张宇宏. 来源于青霉菌聚半乳糖醛酸酶的筛选及其在大肠杆菌中的异源表达[J]. 生物技术进展, 2011, 1(6): 426-431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部