生物技术进展 ›› 2021, Vol. 11 ›› Issue (5): 618-627.DOI: 10.19586/j.2095-2341.2021.0110
收稿日期:
2021-06-15
接受日期:
2021-07-15
出版日期:
2021-09-25
发布日期:
2021-10-08
通讯作者:
王光辉
作者简介:
段凯莉 E-mail:duankaili@nwafu.edu.cn;
基金资助:
Kaili DUAN(), Cong JIANG, Guanghui WANG(
)
Received:
2021-06-15
Accepted:
2021-07-15
Online:
2021-09-25
Published:
2021-10-08
Contact:
Guanghui WANG
摘要:
由禾谷镰刀菌引起的小麦赤霉病是小麦生产最重要的真菌病害之一,除了造成严重的产量损失外,其病原菌还会产生多种真菌毒素危害人畜健康。蛋白激酶在禾谷镰刀菌生长发育、植物侵染和胁迫应答等方面具有重要作用。综述了禾谷镰刀菌主要蛋白激酶在生物学功能和分子作用机制等方面的研究进展,并对未来禾谷镰刀菌蛋白激酶的研究趋势进行了展望,以期为今后禾谷镰刀菌蛋白激酶的研究与小麦赤霉病的防治提供理论参考。
中图分类号:
段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627.
Kaili DUAN, Cong JIANG, Guanghui WANG. Research Progress of Protein Kinases in Wheat Scab Fungus Fusarium graminearum[J]. Current Biotechnology, 2021, 11(5): 618-627.
1 | 刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(05): 1-9. |
2 | MOTAUNG T E, SAITOH H, TSILO T J. Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis [J]. Mol. Plant. Pathol., 2017, 18(5): 754-764. |
3 | 段亚冰, 效雪梅, 杨莹, 等. 一种基于LAMP技术快速检测小麦赤霉病菌对多菌灵抗药性方法的建立及应用[J]. 南京农业大学学报, 2016, 39(01): 97-105. |
4 | MANNING G, WHYTE D B, MARTINEZ R, et al.. The protein kinase complement of the human genome [J]. Science, 2002, 298(5600): 1912-1934. |
5 | COHEN P. The regulation of protein function by multisite phosphorylation--a 25 year update [J]. Trends Biochem. Sci., 2000, 25(12): 596-601. |
6 | KRUPA A, ANAMIK A, SRINIVASAN N. Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa [J]. Gene, 2006, 380(1): 1-13. |
7 | MIRANDA-SAAVEDRA D, BARTON G J. Classification and functional annotation of eukaryotic protein kinases [J]. Proteins, 2007, 68(4): 893-914. |
8 | WANG C, ZHANG S, HOU R, et al.. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum [J/OL]. PLoS Pathog., 2011, 7(12): e1002460[2021-07-07]. . |
9 | KIM C, VIGIL D, ANAND G, et al.. Structure and dynamics of PKA signaling proteins [J]. Eur. J. Cell Biol., 2006, 85(7): 651-654. |
10 | HU S, ZHOU X, GU X, et al.. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum [J]. Mol. Plant Microbe Interact., 2014, 27(6): 557-566. |
11 | JIANG C, ZHANG C, WU C, et al.. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum [J]. Environ. Microbiol., 2016, 18(11): 3689-3701. |
12 | LI Y, ZHANG X, HU S, et al.. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae [J/OL]. PLoS Genet., 2017, 13(8): e1006954[2021-07-07]. . |
13 | LI C, ZHANG Y, WANG H, et al.. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum [J]. Mol. Plant Pathol., 2018, 19(4): 909-921. |
14 | JIANG C, ZHANG X, LIU H, et al.. Mitogen-activated protein kinase signaling in plant pathogenic fungi [J]. PLoS Pathog., 2018, 14(3): e1006875[2021-07-07]. . |
15 | HAMEL L P, NICOLE M C, DUPLESSIS S, et al.. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers [J]. Plant Cell, 2012, 24(4): 1327-1251. |
16 | XU J R. Map kinases in fungal pathogens [J]. Fungal Genet. Biol., 2000, 31(3): 137-152. |
17 | JENCZMIONKA N J, MAIER F J, L SCH A P, et al.. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase Gpmk1 [J]. Curr. Genet., 2003, 43(2): 87-95. |
18 | JENCZMIONKA N J, SCH F W. The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes [J]. Curr. Genet., 2005, 47(1): 29-36. |
19 | URBAN M, MOTT E, FARLEY T, et al.. The Fusarium graminearumMAP1 gene is essential for pathogenicity and development of perithecia [J]. Mol. Plant. Pathol., 2003, 4(5): 347-359. |
20 | BLUHM B H, ZHAO X, FLAHERTY J E, et al.. RAS2 regulates growth and pathogenesis in Fusarium graminearum [J]. Mol. Plant Microbe Interact., 2007, 20(6): 627-636. |
21 | GU Q, CHEN Y, LIU Y, et al.. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum [J]. New Phytol., 2015, 206(1): 315-328. |
22 | JIANG C, CAO S, WANG Z, et al.. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection [J]. Nat. Microbiol., 2019, 4(9): 1582-1591. |
23 | ZHENG D, ZHANG S, ZHOU X, et al.. The FgHOGpathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum [J/OL]. PLoS ONE, 2012, 7(11): e49495[2021-07-07]. . |
24 | JIANG J, YUN Y, YANG Q, et al.. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum [J/OL]. PLoS ONE, 2011, 6(9): e25311[2021-07-07]. . |
25 | HOU Z, XUE C, PENG Y, et al.. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. [J]. Mol. Plant Microbe Interact., 2002, 15(11): 1119-1127. |
26 | RAMAMOORTHY V, ZHAO X, SNYDER A K, et al.. Two mitogen-activated protein kinase signaling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum [J]. Cell Microbiol., 2007, 9(6): 1491-1506. |
27 | YUN Y, LIU Z, ZHANG J, et al.. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways [J]. Environ. Microbiol., 2014, 16(7): 2023-2037. |
28 | XU L, WANG M, TANG G, et al.. The endocytic cargo adaptor complex is required for cell-wall integrity via interacting with the sensor FgWsc2B in Fusarium graminearum [J]. Curr. Genet., 2019, 65(4): 1071-1080. |
29 | REN J, LI C, GAO C, et al.. Deletion of FgHOG1 is suppressive to the mgv1 mutant by stimulating Gpmk1 activation and avoiding intracellular turgor elevation in Fusarium graminearum [J/OL]. Front. Microbiol., 2019, 10: 1073[2021-07-07]. . |
30 | HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immune suppressant rapamycin in yeast [J]. Science, 1991, 253(5022): 905-909. |
31 | WULLSCHLEGER S, LOEWITH R, HALL M N. TOR signaling in growth and metabolism [J]. Cell, 2006, 124(3): 471-484. |
32 | YU F, GU Q, YUN Y, et al.. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum [J]. New Phytol., 2014, 203(1): 219-232. |
33 | LIU N, YUN Y, YIN Y, et al.. Lipid droplet biogenesis regulated by the FgNem1/Spo7-FgPah1 phosphatase cascade plays critical roles in fungal development and virulence in Fusarium graminearum [J]. New Phytol., 2019, 223(1): 412-429. |
34 | GU Q, ZHANG C, YU F, et al.. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum [J]. Environ. Microbiol., 2015, 17(8): 2661-2276. |
35 | CHEN D, WANG Y, ZHOU X, et al.. The Sch9kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum [J/OL]. PLoS ONE, 2014, 9(8): e105811[2021-07-07]. . |
36 | MORGAN D O. Cyclin-dependent kinases: engines, clocks, and microprocessors [J]. Annu. Rev. Cell Dev. Biol., 1997, 13: 261-291. |
37 | UBERSAX J A, WOODBURY E L, QUANG P N, et al.. Targets of the cyclin-dependent kinase Cdk1 [J]. Nature, 2003, 425(6960): 859-864. |
38 | ARELLANO M, MORENO S. Regulation of CDK/cyclin complexes during the cell cycle [J]. Int. J. Biochem. Cell Biol., 1997, 29(4): 559-573. |
39 | MALUMBRES M, BARBACID M. Cell cycle, CDKs and cancer: a changing paradigm [J]. Nat. Rev. Cancer, 2009, 9(3): 153-166. |
40 | BOOHER R, BEACH D. Site-specific mutagenesis of cdc2+, a cell cycle control gene of the fission yeast Schizosaccharomycespombe [J]. Mol. Cell Biol., 1986, 6(10): 3523-2530. |
41 | MENDENHALL M D, HODGE A E. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae [J]. Microbiol. Mol. Biol. Rev., 1998, 62(4): 1191-1243. |
42 | MALUMBRES M. Cyclin-dependent kinases [J/OL]. Genome Biol., 2014, 15(6): 122[2021-07-07]. . |
43 | LIU H, ZHANG S, MA J, et al.. Two Cdc2 kinase genes with distinct functions in vegetative and infectious hyphae in Fusarium graminearum [J/OL]. PLoS Pathog., 2015, 11(6): e1004913[2021-07-07]. . |
44 | JIANG C, XU J R, LIU H. Distinct cell cycle regulation during saprophytic and pathogenic growth in fungal pathogens [J]. Curr. Genet., 2016, 62(1): 185-189. |
45 | CONAWAY R C, CONAWAY J W. Function and regulation of the mediator complex [J]. Curr. Opin. Genet. Dev., 2011, 21(2): 225-230. |
46 | KUCHIN S, YEGHIAYAN P, CARLSON M. Cyclin-dependent protein kinase and cyclin homologsSSN3 and SSN8 contribute to transcriptional control in yeast [J]. Proc. Natl. Acad. Sci. USA, 1995, 92(9): 4006-4010. |
47 | CAO S, ZHANG S, HAO C, et al.. FgSsn3kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum [J/OL]. Sci. Rep., 2016, 6: 22333[2021-07-07]. . |
48 | ZHOU X, HEYER C, CHOI Y E, et al.. The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum [J]. Fungal Genet. Biol., 2010, 47(2): 143-151. |
49 | LEE Y, RIO D C. Mechanisms and regulation of alternative pre-mRNA splicing [J]. Annu. Rev. Biochem., 2015, 84: 291-323. |
50 | FAIR B J, PLEISS J A. The power of fission: yeast as a tool for understanding complex splicing [J]. Curr. Genet., 2017, 63(3): 375-380. |
51 | SCHWELNUS W, RICHERT K, OPITZ F, et al.. Fission yeast Prp4p kinase regulates pre-mRNA splicing by phosphorylating a non-SR-splicing factor [J]. EMBO Rep., 2001, 2(1): 35-41. |
52 | BOTTNER C A, SCHMIDT H, VOGEL S, et al.. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomycespombe [J]. Curr. Genet., 2005, 48(3): 151-161. |
53 | SCHNEIDER M, HSIAO H H, WILL C L, et al.. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation [J]. Nat. Struct. Mol. Biol., 2010, 17(2): 216-221. |
54 | GAO X, JIN Q, JIANG C, et al.. FgPrp4 kinase is important for spliceosome B-complex activation and splicing efficiency in Fusarium graminearum [J/OL]. PLoS Genet., 2016, 12(4): e1005973[2021-07-07]. . |
55 | GAO X, ZHANG J, SONG C, et al.. Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum [J]. Curr. Genet., 2018, 64(6): 1261-1274. |
56 | SUN M, ZHANG Y, WANG Q, et al.. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum [J]. Mol. Microbiol., 2018, 109(4): 494-508. |
57 | LI X, FAN Z, YAN M, et al.. Spontaneous mutations in FgSAD1 suppress the growth defect of the Fgprp4 mutant by affecting tri-snRNP stability and its docking in Fusarium graminearum [J]. Environ. Microbiol., 2019, 21(12): 4488-4503. |
58 | ZHANG Y, GAO X, SUN M, et al.. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum [J]. Environ. Microbiol., 2017, 19(10): 4065-4079. |
59 | HUANG Y, YARIO T A, STEITZ J A. A molecular link between SR protein dephosphorylation and mRNA export [J]. Proc. Natl. Acad. Sci. USA, 2004, 101(26): 9666-9670. |
60 | HUANG Y, STEITZ J A. SRprises along a messenger's journey [J]. Mol. Cell, 2005, 17(5): 613-615. |
61 | GIANNAKOUROS T, NIKOLAKAKI E, MYLONIS I, et al.. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence [J]. FEBS J., 2011, 278(4): 570-586. |
62 | GHOSH G, ADAMS J A. Phosphorylation mechanism and structure of serine-arginine protein kinases [J]. FEBS J., 2011, 278(4): 587-597. |
63 | WANG G, SUN P, GONG Z, et al.. Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum [J]. Environ. Microbiol., 2018, 20(9): 3261-3277. |
64 | LIU H, WANG Q, HE Y, et al.. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes [J]. Genome Res., 2016, 26(4): 499-509. |
65 | TASSAN J P, LE GOFF X. An overview of the KIN1/PAR-1/MARK kinase family [J]. Biol. Cell., 2004, 96(3): 193-199. |
66 | ELBERT M, ROSSI G, BRENNWALD P. The yeast Par-1 homologs Kin1 and Kin2 show genetic and physical interactions with components of the exocytic machinery [J]. Mol. Biol. Cell, 2005, 16(2): 532-549. |
67 | CADOU A, COUTURIER A, LE GOFF C, et al.. Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeast [J]. Mol. Microbiol., 2010, 77(5): 1186-1202. |
68 | MYLONAKIS E, IDNURM A, MORENO R, et al.. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals [J]. Mol. Microbiol., 2004, 54(2): 407-419. |
69 | LUO Y, ZHANG H, QI L, et al.. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum [J]. New Phytol., 2014, 204(4): 943-954. |
70 | OSOLODKIN D I, ZAKHAREVICH N V, PALYULIN V A, et al.. Bioinformatic analysis of glycogen synthase kinase 3: human versus parasite kinases [J]. Parasitology, 2011, 138(6): 725-735. |
71 | FRAME S, COHEN P. GSK3 takes centre stage more than 20 years after its discovery [J]. Biochem. J., 2001, 359(1): 1-16. |
72 | QIN J, WANG G, JIANG C, et al.. Fgk3glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum [J/OL]. Sci. Rep., 2015, 5: 8504[2021-07-07]. . |
73 | SCHULZE A, DOWNWARD J. Flicking the Warburg switch-tyrosine phosphorylation of pyruvate dehydrogenase kinase regulates mitochondrial activity in cancer cells [J]. Mol. Cell., 2011, 44(6): 846-848. |
74 | GAO T, CHEN J, SHI Z. Fusarium graminearum pyruvate dehydrogenase kinase 1 (FgPDK1) is critical for conidiation, mycelium growth, and pathogenicity [J/OL]. PLoS ONE, 2016, 11(6): e0158077[2021-07-07]. . |
[1] | 梁传财, 易鹏, 邱波. AMPK/SIRT1/PPARγ/PGC1α轴及其相关因子在骨关节炎脂质代谢中的作用[J]. 生物技术进展, 2021, 11(6): 718-723. |
[2] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[3] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[4] | 刘馨, 方欣, 汪爽, 王立雯, 武德亮, LEE Yin Won, MOHAMED Sherif Ramzy, 徐剑宏, 史建荣. DON生物合成的亚细胞定位和精准外排研究进展[J]. 生物技术进展, 2021, 11(5): 642-646. |
[5] | 李兵, 梁晋刚, 朱育攀, 王御琦, 焦浈. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展, 2021, 11(5): 647-652. |
[6] | 孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659. |
[7] | 吴迪,,郑彤,李磊,李韬. 小麦全基因组抗赤霉病QTL关联位点特异性SSR标记的筛选、等位变异及效应解析[J]. 生物技术进展, 2020, 10(3): 242-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部