生物技术进展 ›› 2025, Vol. 15 ›› Issue (4): 683-692.DOI: 10.19586/j.2095-2341.2025.0022
• 研究论文 • 上一篇
收稿日期:
2025-02-21
接受日期:
2025-03-21
出版日期:
2025-07-25
发布日期:
2025-09-08
通讯作者:
吴向阳
作者简介:
耿鑫 E-mail: 1216345231@qq.com;
基金资助:
Xin GENG(), Weiwei FENG, Guanghua MAO, Yao CHEN, Xiangyang WU(
)
Received:
2025-02-21
Accepted:
2025-03-21
Online:
2025-07-25
Published:
2025-09-08
Contact:
Xiangyang WU
摘要:
探究了有机磷杀虫剂(organophosphate insecticides,OPs)在入太湖流域沿线的污染状况和生态安全问题。在丰水期和枯水期收集该水域水、悬浮颗粒(suspended particulate matter,SPM)和沉积物样品,采用GC法检测OPs的种类及含量,分析季节分布规律、分配系数和潜在污染源,然后评估OPs的生态风险。结果发现,水、SPM和沉积物样品中均能检测到辛硫磷(phoxim,PHO)、敌敌畏(dichlorvos,DDVP)、乐果(dimethoate,DMT)和杀螟硫磷(fenitrothion,MEP)。在水样中,PHO、DMT和DDVP的含量较高且占比多,MEP的含量相对较少。在丰水期,Σ4OPs的Kd1为0.44~1.32 L·g-1,Kd2为2.97~6.88 L·g-1;在枯水期,Σ4OPs的Kd1为0.34~1. 40 L·g-1,Kd2为2.85~7.43 L·g-1,表明OPs在水样、SPM样和沉积物中的分布较为稳定。综上,入太湖流域沿线水体已存在有机磷杀虫剂污染,工业、农业废水的排放可能是入太湖流域沿线OPs的主要来源,DMT和MEP 2种OPs污染物对镇江市通济河沿线主要河流具有潜在生态风险。
中图分类号:
耿鑫, 冯伟伟, 茆广华, 陈瑶, 吴向阳. 有机磷杀虫剂在入太湖流域沿线的污染状况和生态风险评价研究[J]. 生物技术进展, 2025, 15(4): 683-692.
Xin GENG, Weiwei FENG, Guanghua MAO, Yao CHEN, Xiangyang WU. Pollution Status and Ecological Risk Assessment of Organophosphate Insecticides Along the Inflow Routes to the Taihu Lake Basin[J]. Current Biotechnology, 2025, 15(4): 683-692.
采样点 | 经度 | 纬度 | 位置 |
---|---|---|---|
S1 | 119°21'25.258"E | 31°56'0.781"N | 通济河 |
S2 | 119°21'32.029"E | 31°54'41.071"N | 通济河 |
S3 | 119°22'34.143"E | 31°54'47.738"N | 通济河 |
S4 | 119°23'48.648"E | 31°54'41.471"N | 通济河 |
S5 | 119°24'14.064"E | 31°53'52.525"N | 通济河 |
S6 | 119°24'46.411"E | 31°52'52.301"N | 通济河 |
S7 | 119°25'11.358"E | 31°52'3.028"N | 通济河 |
S8 | 119°24'54.701"E | 31°51'13.254"N | 通济河 |
S9 | 119°26'5.149"E | 31°51'2.437"N | 通济河 |
S10 | 119°21'16.062"E | 31°55'1.163"N | 通济河 |
S11 | 119°21'18.475"E | 31°54'52.796"N | 通济河 |
S12 | 119°21'8.674"E | 31°54'54.203"N | 袁相河 |
S13 | 119°20'23.321"E | 31°54'7.292"N | 袁相河 |
S14 | 119°19'33.056"E | 31°53'30.288"N | 袁相河 |
S15 | 119°24'21.068"E | 31°53'7.041"N | 通济河 |
S16 | 119°24'33.384"E | 31°53'4.691"N | 通济河 |
S17 | 119°24'27.602"E | 31°53'13.792"N | 老幸福河 |
S18 | 119°23'25.592"E | 31°52'56.274"N | 老幸福河 |
S19 | 119°22'16.378"E | 31°52'26.807"N | 老幸福河 |
S20 | 119°24'59.539"E | 31°52'29.627"N | 通济河 |
S21 | 119°25'4.894"E | 31°52'22.040"N | 通济河 |
S22 | 119°25'7.207"E | 31°52'27.492"N | 香草河 |
S23 | 119°25'53.635"E | 31°53'3.748"N | 香草河 |
S24 | 119°26'37.217"E | 31°53'39.690"N | 香草河 |
表1 采样点的具体地理位置
Table 1 The latitude and longitude data and relevant information of sampling stations
采样点 | 经度 | 纬度 | 位置 |
---|---|---|---|
S1 | 119°21'25.258"E | 31°56'0.781"N | 通济河 |
S2 | 119°21'32.029"E | 31°54'41.071"N | 通济河 |
S3 | 119°22'34.143"E | 31°54'47.738"N | 通济河 |
S4 | 119°23'48.648"E | 31°54'41.471"N | 通济河 |
S5 | 119°24'14.064"E | 31°53'52.525"N | 通济河 |
S6 | 119°24'46.411"E | 31°52'52.301"N | 通济河 |
S7 | 119°25'11.358"E | 31°52'3.028"N | 通济河 |
S8 | 119°24'54.701"E | 31°51'13.254"N | 通济河 |
S9 | 119°26'5.149"E | 31°51'2.437"N | 通济河 |
S10 | 119°21'16.062"E | 31°55'1.163"N | 通济河 |
S11 | 119°21'18.475"E | 31°54'52.796"N | 通济河 |
S12 | 119°21'8.674"E | 31°54'54.203"N | 袁相河 |
S13 | 119°20'23.321"E | 31°54'7.292"N | 袁相河 |
S14 | 119°19'33.056"E | 31°53'30.288"N | 袁相河 |
S15 | 119°24'21.068"E | 31°53'7.041"N | 通济河 |
S16 | 119°24'33.384"E | 31°53'4.691"N | 通济河 |
S17 | 119°24'27.602"E | 31°53'13.792"N | 老幸福河 |
S18 | 119°23'25.592"E | 31°52'56.274"N | 老幸福河 |
S19 | 119°22'16.378"E | 31°52'26.807"N | 老幸福河 |
S20 | 119°24'59.539"E | 31°52'29.627"N | 通济河 |
S21 | 119°25'4.894"E | 31°52'22.040"N | 通济河 |
S22 | 119°25'7.207"E | 31°52'27.492"N | 香草河 |
S23 | 119°25'53.635"E | 31°53'3.748"N | 香草河 |
S24 | 119°26'37.217"E | 31°53'39.690"N | 香草河 |
OPs | 物种 | CP/(ng·L-1) |
---|---|---|
藻类 | 1 820 | |
DMT | 甲壳类 | 15 000 |
鱼类 | 5 700 | |
DDVP | 鱼类 | 3 700 |
MEP | 藻类 | 10 |
鱼类 | 3 750 |
表2 水和沉积物样中OPs对最敏感的水生物种的CP值
Table 2 CP values for the three OPs in water and sediment for the most sensitive aquatic species
OPs | 物种 | CP/(ng·L-1) |
---|---|---|
藻类 | 1 820 | |
DMT | 甲壳类 | 15 000 |
鱼类 | 5 700 | |
DDVP | 鱼类 | 3 700 |
MEP | 藻类 | 10 |
鱼类 | 3 750 |
季节 | 采样点 | pH | 电导率/(µs·cm-1) | 溶解氧/(mg·L-1) | 温度/℃ | 浊度/FNU |
---|---|---|---|---|---|---|
丰水期 | S1 | 7.46 | 577 | 5.8 | 23.4 | 28.9 |
S2 | 8.21 | 488 | 6.5 | 22.5 | 13.7 | |
S3 | 7.86 | 505 | 5.0 | 22.5 | 12.9 | |
S4 | 7.53 | 498 | 6.1 | 21.9 | 22.8 | |
S5 | 7.56 | 520 | 6.1 | 22.7 | 46.2 | |
S6 | 7.47 | 522 | 6.3 | 22.9 | 11.6 | |
S7 | 7.40 | 477 | 6.3 | 22.9 | 13.7 | |
S8 | 7.46 | 494 | 6.9 | 22.4 | 4.2 | |
S9 | 7.70 | 501 | 8.7 | 22.2 | 12.5 | |
S10 | 7.67 | 602 | 4.4 | 22.3 | 49.2 | |
S11 | 7.88 | 496 | 5.9 | 22.0 | 10.9 | |
S12 | 7.19 | 487 | 6.7 | 22.3 | 16.9 | |
S13 | 7.22 | 485 | 5.5 | 22.4 | 52.1 | |
S14 | 7.25 | 258 | 4.8 | 22.7 | 12.0 | |
S15 | 7.68 | 533 | 7.0 | 22.7 | 23.9 | |
S16 | 7.50 | 541 | 7.5 | 22.9 | 4.1 | |
S17 | 7.38 | 532 | 3.9 | 22.6 | 4.7 | |
S18 | 8.11 | 471 | 6.7 | 22.7 | 13.0 | |
S19 | 8.50 | 485 | 7.7 | 23.4 | 4.7 | |
S20 | 7.61 | 529 | 7.0 | 23.4 | 5.6 | |
S21 | 7.64 | 503 | 7.0 | 23.3 | 4.8 | |
S22 | 7.56 | 476 | 6.7 | 23.3 | 9.2 | |
S23 | 7.25 | 444 | 7.1 | 23.2 | 12.1 | |
S24 | 7.71 | 411 | 7.2 | 23.2 | 7.8 | |
枯水期 | S1 | 7.88 | 570 | 6.8 | 9.1 | 15.8 |
S2 | 7.02 | 414 | 7.6 | 9.7 | 14.8 | |
S3 | 7.06 | 475 | 6.9 | 9.2 | 14.8 | |
S4 | 7.99 | 428 | 8.3 | 9.6 | 14.8 | |
S5 | 7.17 | 480 | 6.4 | 9.5 | 14.7 | |
S6 | 7.95 | 496 | 5.9 | 8.6 | 14.5 | |
S7 | 7.98 | 481 | 6.1 | 8.6 | 14.7 | |
S8 | 7.63 | 482 | 7.7 | 9.0 | 14.8 | |
S9 | 7.03 | 471 | 8.4 | 8.3 | 14.8 | |
S10 | 7.53 | 656 | 4.2 | 9.7 | 14.2 | |
S11 | 7.85 | 441 | 6.2 | 9.9 | 14.2 | |
S12 | 7.51 | 499 | 6.0 | 8.6 | 14.3 | |
S13 | 7.60 | 402 | 4.9 | 8.6 | 14.3 | |
S14 | 7.76 | 357 | 4.2 | 8.8 | 14.4 | |
S15 | 7.72 | 480 | 7.2 | 10.0 | 14.2 | |
S16 | 7.82 | 509 | 6.2 | 9.0 | 15.1 | |
S17 | 7.83 | 533 | 4.0 | 9.1 | 14.8 | |
S18 | 7.93 | 448 | 4.9 | 9.0 | 14.7 | |
S19 | 7.89 | 434 | 19.2 | 8.7 | 15.0 | |
S20 | 7.98 | 485 | 21.9 | 9.6 | 14.9 | |
S21 | 7.09 | 472 | 4.9 | 9.8 | 14.8 | |
S22 | 7.19 | 454 | 34.7 | 10.5 | 15.1 | |
S23 | 7.19 | 451 | 4.8 | 10.9 | 14.2 | |
S24 | 7.77 | 445 | 66.3 | 9.6 | 15.1 |
表3 采集水样的基本特性
Table 3 Basic characteristics of collected water samples
季节 | 采样点 | pH | 电导率/(µs·cm-1) | 溶解氧/(mg·L-1) | 温度/℃ | 浊度/FNU |
---|---|---|---|---|---|---|
丰水期 | S1 | 7.46 | 577 | 5.8 | 23.4 | 28.9 |
S2 | 8.21 | 488 | 6.5 | 22.5 | 13.7 | |
S3 | 7.86 | 505 | 5.0 | 22.5 | 12.9 | |
S4 | 7.53 | 498 | 6.1 | 21.9 | 22.8 | |
S5 | 7.56 | 520 | 6.1 | 22.7 | 46.2 | |
S6 | 7.47 | 522 | 6.3 | 22.9 | 11.6 | |
S7 | 7.40 | 477 | 6.3 | 22.9 | 13.7 | |
S8 | 7.46 | 494 | 6.9 | 22.4 | 4.2 | |
S9 | 7.70 | 501 | 8.7 | 22.2 | 12.5 | |
S10 | 7.67 | 602 | 4.4 | 22.3 | 49.2 | |
S11 | 7.88 | 496 | 5.9 | 22.0 | 10.9 | |
S12 | 7.19 | 487 | 6.7 | 22.3 | 16.9 | |
S13 | 7.22 | 485 | 5.5 | 22.4 | 52.1 | |
S14 | 7.25 | 258 | 4.8 | 22.7 | 12.0 | |
S15 | 7.68 | 533 | 7.0 | 22.7 | 23.9 | |
S16 | 7.50 | 541 | 7.5 | 22.9 | 4.1 | |
S17 | 7.38 | 532 | 3.9 | 22.6 | 4.7 | |
S18 | 8.11 | 471 | 6.7 | 22.7 | 13.0 | |
S19 | 8.50 | 485 | 7.7 | 23.4 | 4.7 | |
S20 | 7.61 | 529 | 7.0 | 23.4 | 5.6 | |
S21 | 7.64 | 503 | 7.0 | 23.3 | 4.8 | |
S22 | 7.56 | 476 | 6.7 | 23.3 | 9.2 | |
S23 | 7.25 | 444 | 7.1 | 23.2 | 12.1 | |
S24 | 7.71 | 411 | 7.2 | 23.2 | 7.8 | |
枯水期 | S1 | 7.88 | 570 | 6.8 | 9.1 | 15.8 |
S2 | 7.02 | 414 | 7.6 | 9.7 | 14.8 | |
S3 | 7.06 | 475 | 6.9 | 9.2 | 14.8 | |
S4 | 7.99 | 428 | 8.3 | 9.6 | 14.8 | |
S5 | 7.17 | 480 | 6.4 | 9.5 | 14.7 | |
S6 | 7.95 | 496 | 5.9 | 8.6 | 14.5 | |
S7 | 7.98 | 481 | 6.1 | 8.6 | 14.7 | |
S8 | 7.63 | 482 | 7.7 | 9.0 | 14.8 | |
S9 | 7.03 | 471 | 8.4 | 8.3 | 14.8 | |
S10 | 7.53 | 656 | 4.2 | 9.7 | 14.2 | |
S11 | 7.85 | 441 | 6.2 | 9.9 | 14.2 | |
S12 | 7.51 | 499 | 6.0 | 8.6 | 14.3 | |
S13 | 7.60 | 402 | 4.9 | 8.6 | 14.3 | |
S14 | 7.76 | 357 | 4.2 | 8.8 | 14.4 | |
S15 | 7.72 | 480 | 7.2 | 10.0 | 14.2 | |
S16 | 7.82 | 509 | 6.2 | 9.0 | 15.1 | |
S17 | 7.83 | 533 | 4.0 | 9.1 | 14.8 | |
S18 | 7.93 | 448 | 4.9 | 9.0 | 14.7 | |
S19 | 7.89 | 434 | 19.2 | 8.7 | 15.0 | |
S20 | 7.98 | 485 | 21.9 | 9.6 | 14.9 | |
S21 | 7.09 | 472 | 4.9 | 9.8 | 14.8 | |
S22 | 7.19 | 454 | 34.7 | 10.5 | 15.1 | |
S23 | 7.19 | 451 | 4.8 | 10.9 | 14.2 | |
S24 | 7.77 | 445 | 66.3 | 9.6 | 15.1 |
OPs | 水样 | SPM样 | 沉积物样 | ||||||
---|---|---|---|---|---|---|---|---|---|
MDL/(ng·L-1) | 回收率/% | RSD/% | MDL/(ng·g-1) | 回收率/% | RSD/% | MDL/(ng·g-1) | 回收率/% | RSD/% | |
PHO | 5.07 | 19.32±2.52 | 13.0 | 9.62 | 32.90±5.72 | 17.38 | 1.94 | 10.38±1.15 | 11.10 |
DDVP | 2.55 | 21.84±1.26 | 5.79 | 1.13 | 11.07±2.08 | 18.79 | 1.19 | 7.81±2.19 | 28.01 |
DMT | 3.89 | 16.11±1.94 | 9.02 | 10.88 | 31.47±6.47 | 20.55 | 2.15 | 16.20±3.19 | 19.70 |
MEP | 4.78 | 17.21±1.12 | 13.20 | 0.21 | 9.03±0.61 | 6.77 | 0.24 | 6.39±0.73 | 11.36 |
表4 不同OPs的方法检测限和回收率(n=6)
Table 4 Method detection limits and recoveries for different OPs (n=6)
OPs | 水样 | SPM样 | 沉积物样 | ||||||
---|---|---|---|---|---|---|---|---|---|
MDL/(ng·L-1) | 回收率/% | RSD/% | MDL/(ng·g-1) | 回收率/% | RSD/% | MDL/(ng·g-1) | 回收率/% | RSD/% | |
PHO | 5.07 | 19.32±2.52 | 13.0 | 9.62 | 32.90±5.72 | 17.38 | 1.94 | 10.38±1.15 | 11.10 |
DDVP | 2.55 | 21.84±1.26 | 5.79 | 1.13 | 11.07±2.08 | 18.79 | 1.19 | 7.81±2.19 | 28.01 |
DMT | 3.89 | 16.11±1.94 | 9.02 | 10.88 | 31.47±6.47 | 20.55 | 2.15 | 16.20±3.19 | 19.70 |
MEP | 4.78 | 17.21±1.12 | 13.20 | 0.21 | 9.03±0.61 | 6.77 | 0.24 | 6.39±0.73 | 11.36 |
图1 入太湖流域沿线丰水期和枯水期时OPs的平均浓度注:误差棒代表每个OPs同系物的标准偏差,*表示与枯水期相比在P<0.05水平上具有统计学意义。
Fig. 1 Mean concentrations of OPs along the inlet to the Taihu Lake Basin during the abundant and dry periods
图3 入太湖流域沿线丰水期和枯水期时OPs的分配系数A:丰水期水相和SPM相;B:丰水期水相和沉积物相;C:枯水期水相和SPM相;D:枯水期水相和沉积物相
Fig. 3 Distribution coefficients of OPs along the inlet to the Taihu Lake Basin during the period of abundant and dry water
介质 | 物质 | PHO | DDVP | DMT | MEP |
---|---|---|---|---|---|
水相 | PHO | 1 | |||
DDVP | 0.111 | 1 | |||
DMT | 0.436** | 0.491** | 1 | ||
MEP | 0.313 | 0.281 | 0.338* | 1 | |
SPM相 | PHO | 1 | |||
DDVP | 0.08 | 1 | |||
DMT | 0.756** | -0.109 | 1 | ||
MEP | -0.189 | -0.413 | 0.188 | 1 | |
沉积物相 | PHO | 1 | |||
DDVP | 0.099 | 1 | |||
DMT | -0.536 | -0.143 | 1 | ||
MEP | -0.328 | -0.418* | 0.344 | 1 |
表5 入太湖流域沿线OPs的相关性分析
Table 5 Correlation analysis of OPs along the inlet Taihu Lake Basin
介质 | 物质 | PHO | DDVP | DMT | MEP |
---|---|---|---|---|---|
水相 | PHO | 1 | |||
DDVP | 0.111 | 1 | |||
DMT | 0.436** | 0.491** | 1 | ||
MEP | 0.313 | 0.281 | 0.338* | 1 | |
SPM相 | PHO | 1 | |||
DDVP | 0.08 | 1 | |||
DMT | 0.756** | -0.109 | 1 | ||
MEP | -0.189 | -0.413 | 0.188 | 1 | |
沉积物相 | PHO | 1 | |||
DDVP | 0.099 | 1 | |||
DMT | -0.536 | -0.143 | 1 | ||
MEP | -0.328 | -0.418* | 0.344 | 1 |
元素 | 水相 | SPM相 | 沉积物相 | |||
---|---|---|---|---|---|---|
因子1 | 因子2 | 因子1 | 因子2 | 因子1 | 因子2 | |
PHO | 0.200 | 0.702 | 0.854 | -0.176 | 0.026 | -0.794 |
DDVP | 0.738 | 0.127 | -0.036 | 0. 748 | 0.916 | 0.074 |
DMT | 0.751 | -0.086 | 0.882 | 0.064 | -0.142 | 0.766 |
MEP | -0.156 | 0.765 | -0.051 | 0.744 | -0.743 | 0.428 |
特征值 | 1.174 | 1.102 | 1.512 | 1.147 | 1.581 | 1.281 |
贡献率/% | 29.357 | 27.545 | 37.798 | 28.685 | 39.532 | 32.037 |
累加/% | 29.357 | 56.902 | 37.798 | 66.483 | 39.532 | 71.568 |
表6 三相中OPs浓度的总方差和旋转负荷矩阵值
Table 6 Total variance and rotational loading matrix values for OPs concentration in three phases
元素 | 水相 | SPM相 | 沉积物相 | |||
---|---|---|---|---|---|---|
因子1 | 因子2 | 因子1 | 因子2 | 因子1 | 因子2 | |
PHO | 0.200 | 0.702 | 0.854 | -0.176 | 0.026 | -0.794 |
DDVP | 0.738 | 0.127 | -0.036 | 0. 748 | 0.916 | 0.074 |
DMT | 0.751 | -0.086 | 0.882 | 0.064 | -0.142 | 0.766 |
MEP | -0.156 | 0.765 | -0.051 | 0.744 | -0.743 | 0.428 |
特征值 | 1.174 | 1.102 | 1.512 | 1.147 | 1.581 | 1.281 |
贡献率/% | 29.357 | 27.545 | 37.798 | 28.685 | 39.532 | 32.037 |
累加/% | 29.357 | 56.902 | 37.798 | 66.483 | 39.532 | 71.568 |
采样点 | 水相中∑OPs/(μg·L-1) | SPM相中∑OPs/(μg·g-1dw) | 沉积物相中∑OPs/(μg·g-1dw) |
---|---|---|---|
S1 | 4.562 | 6.508 | 1.356 |
S2 | 7.266 | 7.453 | 0.685 |
S3 | 2.036 | 5.074 | 0.849 |
S4 | 7.395 | 5.684 | 0.175 |
S5 | 6.795 | 6.861 | 0.436 |
S6 | 3.402 | 4.625 | 0.642 |
S7 | 6.242 | 7.119 | 1.223 |
S8 | 6.031 | 3.216 | 0.542 |
S9 | 3.859 | 7.757 | 0.759 |
S10 | 5.123 | 10.192 | 1.189 |
S11 | 5.610 | 5.498 | 0.702 |
S12 | 3.928 | 7.167 | 1.769 |
S13 | 5.116 | 1.741 | 0.803 |
S14 | 3.668 | 6.857 | 1.111 |
S15 | 4.368 | 6.998 | 2.887 |
S16 | 5.956 | 5.932 | 0.713 |
S17 | 6.836 | 5.836 | 0.786 |
S18 | 3.356 | 6.313 | 2.069 |
S19 | 5.451 | 6.972 | 1.561 |
S20 | 5.721 | 7.816 | 1.036 |
S21 | 8.058 | 7.476 | 0.857 |
S22 | 4.872 | 9.394 | 1.497 |
S23 | 8.146 | 8.018 | 2.139 |
S24 | 6.931 | 8.031 | 0.349 |
表7 OPs在不同采样点的水相、SPM相和沉积物相中的分布
Table 7 Distribution of OPs in water, SPM and sediment phases at different sampling points
采样点 | 水相中∑OPs/(μg·L-1) | SPM相中∑OPs/(μg·g-1dw) | 沉积物相中∑OPs/(μg·g-1dw) |
---|---|---|---|
S1 | 4.562 | 6.508 | 1.356 |
S2 | 7.266 | 7.453 | 0.685 |
S3 | 2.036 | 5.074 | 0.849 |
S4 | 7.395 | 5.684 | 0.175 |
S5 | 6.795 | 6.861 | 0.436 |
S6 | 3.402 | 4.625 | 0.642 |
S7 | 6.242 | 7.119 | 1.223 |
S8 | 6.031 | 3.216 | 0.542 |
S9 | 3.859 | 7.757 | 0.759 |
S10 | 5.123 | 10.192 | 1.189 |
S11 | 5.610 | 5.498 | 0.702 |
S12 | 3.928 | 7.167 | 1.769 |
S13 | 5.116 | 1.741 | 0.803 |
S14 | 3.668 | 6.857 | 1.111 |
S15 | 4.368 | 6.998 | 2.887 |
S16 | 5.956 | 5.932 | 0.713 |
S17 | 6.836 | 5.836 | 0.786 |
S18 | 3.356 | 6.313 | 2.069 |
S19 | 5.451 | 6.972 | 1.561 |
S20 | 5.721 | 7.816 | 1.036 |
S21 | 8.058 | 7.476 | 0.857 |
S22 | 4.872 | 9.394 | 1.497 |
S23 | 8.146 | 8.018 | 2.139 |
S24 | 6.931 | 8.031 | 0.349 |
[1] | 蔡文婷, 刘克强, 李琛, 等. 太湖流域城市群水源地规划布局研究[J]. 中国水利, 2017(19): 53-56. |
CAI W T, LIU K Q, LI C, et al.. Studies on planning and layout of water sources for urban agglomeration in the Taihu Basin[J]. China Water Resour., 2017(19): 53-56. | |
[2] | PAN H, LEI H, HE X, et al.. Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin[J]. Environ. Geochem. Health, 2019, 41(4): 1833-1845. |
[3] | 林璇. 成人尿液中拟除虫菊酯与有机磷杀虫剂代谢产物的时间变异性研究[D]. 杭州: 浙江大学,2021. |
[4] | ERBAN T, STEHLIK M, SOPKO B, et al.. The different behaviors of glyphosate and AMPA in compost-amended soil[J]. Chemosphere, 2018, 207: 78-83. |
[5] | SAHIN C, KARPUZCU M E. Mitigation of organophosphate pesticide pollution in agricultural watersheds[J/OL]. Sci. Total Environ., 2020, 710: 136261[2025-03-21]. . |
[6] | SUMON K A, RASHID H, PEETERS E, et al.. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh[J]. Chemosphere, 2018, 206: 92-100. |
[7] | MANSOUR S A, BELAL M H, ABOU-ARAB A A K, et al.. Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems[J]. Chemosphere, 2009, 75(5): 601-609. |
[8] | ROCA M, MIRALLES-MARCO A, FERRÉ J, et al.. Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain[J]. Environ. Res., 2014, 131: 77-85. |
[9] | CROES K, DEN HOND E, BRUCKERS L, et al.. Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS Ⅰ and Ⅱ)[J]. Environ. Sci. Pollut. Res. Int., 2015, 22(19): 14589-14599. |
[10] | 束放, 熊延坤, 韩梅. 2015年我国农药生产与使用概况[J]. 农药科学与管理, 2016, 37(7): 1-6. |
SHU F, XIONG Y K, HAN M. General situation of pesticide production and use in China in 2015[J]. Pestic. Sci. Adm., 2016, 37(7): 1-6. | |
[11] | VAN SCOY A, PENNELL A, ZHANG X. Environmental fate and toxicology of dimethoate[J]. Rev. Environ. Contam. Toxicol., 2016, 237: 53-70. |
[12] | 张远浩. 乐果暴露致小鼠骨骼肌氧化损伤及N-乙酰半胱氨酸保护作用的研究[D]. 扬州: 扬州大学, 2021. |
[13] | XU L C, LIU L, REN X M, et al.. Evaluation of androgen receptor transcriptional activities of some pesticides in vitro [J]. Toxicology, 2008, 243(1-2): 59-65. |
[14] | 刘学忠, 薛彬, 袁燕, 等. 乐果亚长期暴露对大鼠肝脏氧化应激的影响[J]. 中国兽医学报, 2009, 29(10): 1329-1333. |
LIU X Z, XUE B, YUAN Y, et al.. Effects of sub-chronic exposure to dimethoate on oxidative stress in the liver of rats[J]. Chin. J. Vet. Sci., 2009, 29(10): 1329-1333. | |
[15] | 陈慧. 环境水体中典型邻苯二甲酸酯的污染水平及其复合暴露对斑马鱼的生殖毒性[D]. 镇江: 江苏大学, 2020. |
[16] | 郭强, 田慧, 毛潇萱, 等. 珠江河口水域有机磷农药水生生态系统风险评价[J]. 环境科学, 2014, 35(3): 1029-1034. |
GUO Q, TIAN H, MAO X X, et al.. Ecological risk assessment of organophosphorus pesticides in aquatic ecosystems of Pearl River Estuary[J]. Environ. Sci., 2014, 35(3): 1029-1034. | |
[17] | 钱显, 冯伟伟, 茆广华, 等. 邻苯二甲酸二(2-乙基己基)酯暴露对斑马鱼胚胎的发育毒性及作用机制[J]. 江苏大学学报(医学版), 2024, 34(6): 507-513. |
QIAN X, FENG W W, MAO G H, et al.. Developmental toxicity and molecular mechanism of di-(2-ethylhexyl) phthalate exposure on zebrafish embryos[J]. J. Jiangsu Univ. Med. Ed., 2024, 34(6): 507-513. | |
[18] | 尹晓静, 李星豪, 朱道旭, 等. 太湖西北流域水体有机氯及有机磷农药的残留特征、时空分布及生态风险评价[J]. 环境科学学报, 2024, 44(1): 283-298. |
YIN X J, LI X H, ZHU D X, et al.. Residue characteristics, spatiotemporal distribution and ecotoxicological risk assessment of organochlorine pesticides and organophosphorus pesticides in surface water in northwest Tai Lake Basin[J]. Acta Sci. Circumstantiae, 2024, 44(1): 283-298. | |
[19] | 周慜, 石雷, 李取生, 等. 珠江河口水体有机磷农药的含量与季节变化[J]. 中国环境科学, 2013, 33(2): 312-318. |
ZHOU M, SHI L, LI Q S, et al.. The concentration and seasonal variation of organophosphorus pesticide residues in the Pearl River estuary[J]. China Environ. Sci., 2013, 33(2): 312-318. | |
[20] | 韩玉成. 稻虾共作水域沉积物有机磷农药残留特征及其对磷循环的驱动机制[D]. 武汉: 武汉轻工大学, 2023. |
[21] | 杨宏伟, 庄晓娟. 颗粒物对乐果的吸附特征[J]. 农业环境科学学报, 2011, 30(1): 171-175. |
YANG H W, ZHUANG X J. Adsorption characteristics of rogor on the particulates[J]. J. Agro-Environ. Sci., 2011, 30(1): 171-175. | |
[22] | 汝少国, 李永祺, 敬永畅. 十种有机磷农药对扁藻的毒性[J]. 环境科学学报, 1996, 16(3): 337-341. |
RU S G, LI Y Q, JING Y C. Comparison study on the toxicity of ten organophosphorus pesticides to Platymonas sp[J]. Acta Sci. Circumstantiae, 1996, 16(3): 337-341. | |
[23] | 环境保护部. 国家污染物环境健康风险名录[M]. 北京: 中国环境科学出版社, 2009. |
[24] | 王凌. 海洋环境中典型有机磷污染物分析及其生态效应研究[D]. 青岛: 中国海洋大学, 2006. |
[1] | 雷豆豆, 马润然, 王伽伯, 孔维军. 食品中农药残留的新型生物检测技术研究进展[J]. 生物技术进展, 2023, 13(1): 1-10. |
[2] | 乔岩,董杰,王品舒,岳瑾,张保常,张金良,袁志强,杨建国 . 三种生物源农药对桃树蚜虫的防治效果研究[J]. 生物技术进展, 2015, 5(6): 468-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部