生物技术进展 ›› 2025, Vol. 15 ›› Issue (4): 702-710.DOI: 10.19586/j.2095-2341.2025.0009
• 研究论文 • 上一篇
蔡怡霏1,2(), 马叶子1,2, 夏美娟1,2, 刘翠翠1,2, 王洪涛1,2, 周家喜1,2(
)
收稿日期:
2025-02-01
接受日期:
2025-03-19
出版日期:
2025-07-25
发布日期:
2025-09-08
通讯作者:
周家喜
作者简介:
蔡怡霏 E-mail: caiyifei@ihcams.ac.cn;
基金资助:
Yifei CAI1,2(), Yezi MA1,2, Meijuan XIA1,2, Cuicui LIU1,2, Hongtao WANG1,2, Jiaxi ZHOU1,2(
)
Received:
2025-02-01
Accepted:
2025-03-19
Online:
2025-07-25
Published:
2025-09-08
Contact:
Jiaxi ZHOU
摘要:
巨核细胞是主要存在于成年骨髓中、以产生血小板为主要功能的一类细胞,除此之外,成年期骨髓巨核细胞还具有维持造血干细胞(hematopoietic stem cells, HSC)稳态的作用。近年来研究发现,主动脉-性腺-中肾区(aorta-gonad-mesonephros, AGM)中也存在巨核细胞,并且其参与调控造血干细胞前体(pre-HSC)的产生及成熟。AGM区是最早产生HSC的部位,而骨髓是成年期HSC定居和造血的主要位点,巨核细胞是否在这2个位点通过不同的分子机制调控HSC的发育和功能尚不明确。基于近期报道的小鼠胚胎期AGM区巨核细胞及成年骨髓巨核细胞的单细胞转录组数据,对二者的整体分子特征以及调控HSC生物学过程相关的分子特征进行了对比分析。结果发现,小鼠AGM区巨核细胞与成年期骨髓巨核细胞的分子特征存在较大差异。其中,AGM区巨核细胞高表达细胞增殖、循环系统发育、干细胞发育及分化等分子特征;而成年骨髓巨核细胞高表达免疫反应、外界刺激应答、止凝血、细胞通讯等分子特征。此外,AGM区巨核细胞与成年骨髓巨核细胞高表达不同的与HSC调控相关的分子。研究结果提示,AGM区巨核细胞和成年期骨髓巨核细胞可能通过不同的功能分子调控HSC的发育及功能,可为研究胚胎期和成年期巨核细胞的功能差异及其分子机制提供理论依据。
中图分类号:
蔡怡霏, 马叶子, 夏美娟, 刘翠翠, 王洪涛, 周家喜. 小鼠胚胎主动脉-性腺-中肾区与成年骨髓巨核细胞的分子特征分析[J]. 生物技术进展, 2025, 15(4): 702-710.
Yifei CAI, Yezi MA, Meijuan XIA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Analysis of Molecular Characteristics of Megakaryocytes Between Embryonic Aorta-gonad-mesonephros and Adult Bone Marrow[J]. Current Biotechnology, 2025, 15(4): 702-710.
器官 | 物种 | 细胞类型 | 时期 | 细胞数目 | 测序方法 | 数据号 | 来源 |
---|---|---|---|---|---|---|---|
主动脉-性腺-中肾区 | 小鼠 | 巨核细胞 | 胚胎(孕11.5 d) | 209 | Smart-seq2 | GSE168224 | [ |
骨髓 | 小鼠 | 巨核细胞 | 成年 | 851 | Smart-seq2 | OEP001128 | [ |
表1 数据来源汇总
Table 1 Summary of data source
器官 | 物种 | 细胞类型 | 时期 | 细胞数目 | 测序方法 | 数据号 | 来源 |
---|---|---|---|---|---|---|---|
主动脉-性腺-中肾区 | 小鼠 | 巨核细胞 | 胚胎(孕11.5 d) | 209 | Smart-seq2 | GSE168224 | [ |
骨髓 | 小鼠 | 巨核细胞 | 成年 | 851 | Smart-seq2 | OEP001128 | [ |
图1 小鼠胚胎期AGM区和成年期骨髓巨核细胞分子特征分析注:差异基因表达热图展示小鼠AGM区和骨髓巨核细胞的整体差异基因表达情况。左侧显示二者各自上调的基因数;通过颜色及深浅表示基因表达丰度的高低,蓝色越深代表表达丰度越低,红色越深代表表达丰度越高。
Fig. 1 Analysis of molecular characteristics between megakaryocytes from mouse AGM and adult bone marrow
生物学过程 | P值 | |
---|---|---|
主动脉-性腺-中肾区 | 细胞周期 | 2.40E-15 |
循环系统发育 | 2.83E-15 | |
干细胞发育 | 1.63E-08 | |
干细胞分化 | 2.04E-06 | |
骨髓 | 免疫系统反应 | 5.34E-32 |
外界刺激反应 | 3.01E-26 | |
止凝血 | 2.36E-25 | |
细胞通讯 | 1.25E-16 |
表2 小鼠胚胎期AGM区和成年期骨髓巨核细胞代表性生物学过程
Table 2 Representative biological processes of megakaryocytes from mouse embryonic AGM and adult bone marrow
生物学过程 | P值 | |
---|---|---|
主动脉-性腺-中肾区 | 细胞周期 | 2.40E-15 |
循环系统发育 | 2.83E-15 | |
干细胞发育 | 1.63E-08 | |
干细胞分化 | 2.04E-06 | |
骨髓 | 免疫系统反应 | 5.34E-32 |
外界刺激反应 | 3.01E-26 | |
止凝血 | 2.36E-25 | |
细胞通讯 | 1.25E-16 |
图2 小鼠胚胎期AGM区的巨核细胞(相较于成年骨髓)的分子特征分析A~B:箱线图和小提琴图分别展示小鼠AGM区巨核细胞的细胞周期基因集的评分及其具体基因表达水平;C~D:箱线图和小提琴图分别展示小鼠AGM区巨核细胞的循环系统发育基因集的评分及其具体基因表达水平;E~F:箱线图和小提琴图分别展示小鼠AGM区巨核细胞的干细胞发育基因集的评分及其具体基因表达水平;G~H:箱线图和小提琴图分别展示小鼠AGM区巨核细胞的干细胞分化基因集的评分及其具体基因表达水平;通过Wilcoxon秩和检验计算得出P值,***表示差异在P<0.001水平有统计学意义
Fig. 2 Molecular characteristics analysis of megakaryocytes from mouse embryonic AGM (compared to adult bone marrow)
图3 小鼠成年期骨髓巨核细胞(相较于胚胎期AGM区)的分子特征分析A~B:箱线图和小提琴图分别展示小鼠骨髓巨核细胞的免疫系统反应基因集的评分及其具体基因表达水平;C~D:箱线图和小提琴图分别展示小鼠骨髓巨核细胞的外界刺激反应基因集的评分及其具体基因表达水平;E~F:箱线图和小提琴图分别展示小鼠骨髓巨核细胞的止凝血基因集的评分及其具体基因表达水平;G~H:箱线图和小提琴图分别展示小鼠骨髓巨核细胞的细胞通讯基因集的评分及其具体基因表达水平;通过Wilcoxon秩和检验计算得出P值,***表示在P<0.001水平有统计学差异
Fig. 3 Molecular characteristics analysis of megakaryocytes from mouse adult bone marrow (compared to embryonic AGM)
图4 小鼠胚胎期AGM区及成年期骨髓巨核细胞中涉及造血干细胞生物学过程的差异基因分析A:小提琴图展示小鼠胚胎期AGM区巨核细胞中,相较于成年期骨髓高表达的涉及造血干细胞生物学过程的基因表达水平;B:小提琴图展示小鼠成年期骨髓巨核细胞中,相较于胚胎期AGM区高表达的涉及造血干细胞生物学过程的基因表达水平
Fig. 4 Differential gene analysis of hematopoietic stem cell biological processes in mouse embryonic AGM and adult bone marrow derived megakaryocytes
[1] | WOOLTHUIS C M, PARK C Y. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage[J]. Blood, 2016, 127(10): 1242-1248. |
[2] | MAZZI S, LORDIER L, DEBILI N, et al.. Megakaryocyte and polyploidization[J]. Exp. Hematol., 2018, 57: 1-13. |
[3] | ECKLY A, HEIJNEN H, PERTUY F, et al.. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes[J]. Blood, 2014, 123(6): 921-930. |
[4] | GUO T, WANG X, QU Y, et al.. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation[J/OL]. Stem Cell Investig., 2015, 2: 3[2025-04-10]. . |
[5] | PATEL S R, HARTWIG J H, ITALIANO J E. The biogenesis of platelets from megakaryocyte proplatelets[J]. J. Clin. Invest., 2005, 115(12): 3348-3354. |
[6] | JUNT T, SCHULZE H, CHEN Z, et al.. Dynamic visualization of thrombopoiesis within bone marrow[J]. Science, 2007, 317(5845): 1767-1770. |
[7] | CORTEGANO I, SERRANO N, RUIZ C, et al.. CD45 expression discriminates waves of embryonic megakaryocytes in the mouse[J]. Haematologica, 2019, 104(9): 1853-1865. |
[8] | GELON L, FROMONT L, LEFRANÇAIS E. Occurrence and role of lung megakaryocytes in infection and inflammation[J/OL]. Front. Immunol., 2022, 13: 1029223[2025-04-10]. . |
[9] | YEUNG A K, VILLACORTA-MARTIN C, HON S, et al.. Lung megakaryocytes display distinct transcriptional and phenotypic properties[J]. Blood Adv., 2020, 4(24): 6204-6217. |
[10] | LEFRANÇAIS E, ORTIZ-MUÑOZ G, CAUDRILLIER A, et al.. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors[J]. Nature, 2017, 544(7648): 105-109. |
[11] | LAN W, LI J, YE Z, et al.. A subset of megakaryocytes regulates development of hematopoietic stem cell precursors[J]. EMBO J., 2024, 43(9): 1722-1739. |
[12] | WANG H, HE J, XU C, et al.. Decoding human megakaryocyte development[J]. Cell Stem Cell, 2021, 28(3): 535-549. |
[13] | LIU C, WU D, XIA M, et al.. Characterization of cellular heterogeneity and an immune subpopulation of human megakaryocytes[J/OL]. Adv. Sci., 2021, 8(15): e2100921[2025-04-10]. . |
[14] | SUN S, JIN C, SI J, et al.. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis[J]. Blood, 2021, 138(14): 1211-1224. |
[15] | ORKIN S H, ZON L I. Hematopoiesis: an evolving paradigm for stem cell biology[J]. Cell, 2008, 132(4): 631-644. |
[16] | KUMARAVELU P, HOOK L, MORRISON A M, et al.. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver[J]. Development, 2002, 129(21): 4891-4899. |
[17] | RHODES K E, GEKAS C, WANG Y, et al.. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation[J]. Cell Stem Cell, 2008, 2(3): 252-263. |
[18] | DE BRUIJN M F, SPECK N A, PEETERS M C, et al.. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo[J]. EMBO J., 2000, 19(11): 2465-2474. |
[19] | 王璐,张春霞,刘峰.造血干细胞发育的分子机制[J].中国科学(生命科学),2016,46(1):16-24. |
WANG L, ZHANG C X, LIU F. Molecular regulation of hematopoietic stem cell development[J]. Sci. Sin. Vitae, 2016, 46(1): 16-24. | |
[20] | YAMADA T, PARK C S, LACORAZZA H D. Genetic control of quiescence in hematopoietic stem cells[J]. Cell Cycle, 2013, 12(15): 2376-2383. |
[21] | SEITA J, WEISSMAN I L. Hematopoietic stem cell: self-renewal versus differentiation[J]. Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, 2(6): 640-653. |
[22] | 张立杰,李晓玉,蒲仕明.造血干细胞静息的分子调节研究进展[J].山东医药,2018,58(34):104-106. |
ZHANG L J, LI X Y, PU S M. Research progress on molecular regulation of resting hematopoietic stem cells[J]. Shandong Med. J., 2018, 58(34): 104-106. | |
[23] | BUTLER A, HOFFMAN P, SMIBERT P, et al.. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat. Biotechnol., 2018, 36(5): 411-420. |
[24] | AUTIERI M V. Expression of anaphase-promoting complex 5 in balloon angioplasty-injured rat carotid arteries and mitogen-stimulated human vascular smooth muscle cells[J]. Biochem. Biophys. Res. Commun., 2001, 282(3): 723-728. |
[25] | AUDIA S, BRESCIA C, DATTILO V, et al.. RANBP1 (RAN binding protein 1): the missing genetic piece in cancer pathophysiology and other complex diseases[J/OL]. Cancers, 2023, 15(2): 486[2025-04-10]. . |
[26] | RICHARDSON R T, ALEKSEEV O M, GROSSMAN G, et al.. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation[J]. J. Biol. Chem., 2006, 281(30): 21526-21534. |
[27] | IMONDI R, WIDEMAN C, KAPRIELIAN Z. Complementary expression of transmembrane ephrins and their receptors in the mouse spinal cord: a possible role in constraining the orientation of longitudinally projecting axons[J]. Development, 2000, 127(7): 1397-1410. |
[28] | ALIMPERTI S, ANDREADIS S T. CDH2 and CDH11 act as regulators of stem cell fate decisions[J]. Stem Cell Res., 2015, 14(3): 270-282. |
[29] | TAKEBAYASHI K, SASAI Y, SAKAI Y, et al.. Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements[J]. J. Biol. Chem., 1994, 269(7): 5150-5156. |
[30] | LIU T, KRYSIAK K, SHIRAI C L, et al.. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells[J/OL]. PLoS ONE, 2017, 12(2): e0170470[2025-04-10]. . |
[31] | YU X, HE T, TONG Z, et al.. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis[J/OL]. EMBO Rep., 2023, 24(11): e56902[2025-04-10]. . |
[32] | OTA M, SASAKI H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling[J]. Development, 2008, 135(24): 4059-4069. |
[33] | BARBERO A M, TROTTA A, GENOULA M, et al.. SLAMF1 signaling induces Mycobacterium tuberculosis uptake leading to endolysosomal maturation in human macrophages[J]. J. Leukoc. Biol., 2021, 109(1): 257-273. |
[34] | GUO Q, ZHAO Y, LI J, et al.. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19[J]. Cell Host Microbe, 2021, 29(2): 222-235. |
[35] | RIVA M, KÄLLBERG E, BJÖRK P, et al.. Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like receptor-4-dependent[J]. Immunology, 2012, 137(2): 172-182. |
[36] | MINAKAKI G, MENGES S, KITTEL A, et al.. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype[J]. Autophagy, 2018, 14(1): 98-119. |
[37] | AYOON K, CHO H S, ISHIN H, et al.. Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration[J]. Stem Cells Dev., 2012, 21(18): 3391-3402. |
[38] | ZHAO P, JIANG T, ZHONG Z, et al.. Inhibition of rabies virus replication by interferon-stimulated gene 15 and its activating enzyme UBA7[J]. Infect. Genet. Evol., 2017, 56: 44-53. |
[39] | SILVENNOINEN O, WITTHUHN B A, QUELLE F W, et al.. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction[J]. Proc. Natl. Acad. Sci. USA, 1993, 90(18): 8429-8433. |
[40] | LI N, LIN G, ZHANG H, et al.. Lyn attenuates sepsis-associated acute kidney injury by inhibition of phospho-STAT3 and apoptosis[J/OL]. Biochem. Pharmacol., 2023, 211: 115523[2025-04-10]. . |
[41] | DIEFFENBACH C W, SENGUPTA D N, KRAUSE D, et al.. Cloning of murine gelsolin and its regulation during differentiation of embryonal carcinoma cells[J]. J. Biol. Chem., 1989, 264(22): 13281-13288. |
[42] | GONG Y, ZHAO M, YANG W, et al.. Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia[J]. Exp. Hematol., 2018, 60: 40-46. |
[43] | BRUNS I, LUCAS D, PINHO S, et al.. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion[J]. Nat. Med., 2014, 20(11): 1315-1320. |
[44] | ZHAO M, PERRY J M, MARSHALL H, et al.. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells[J]. Nat. Med., 2014, 20(11): 1321-1326. |
[45] | 李敏敏,夏美娟,赵晶晶,等.人类胚胎期和成年期巨核细胞的分子特征比较[J].生物技术进展,2022,12(4):577-583. |
LI M M, XIA M J, ZHAO J J, et al.. Comparison of the molecular characteristics of human megakaryocytes between embryonic stage and adult stage[J]. Curr. Biotechnol., 2022, 12(4): 577-583. | |
[46] | 刘勤勤,黄柏铭,马叶子,等.急性感染条件下巨核细胞与血小板转录组变化的对比分析[J].生物技术进展,2023,13(3):465-472. |
LIU Q Q, HUANG B M, MA Y Z, et al.. Comparative analysis of megakaryocyte and platelet transcriptome changes in acute infection[J]. Curr. Biotechnol., 2023, 13(3): 465-472. | |
[47] | SNYDER A, FRASER S T, BARON M H. Bone morphogenetic proteins in vertebrate hematopoietic development[J]. J. Cell. Biochem., 2004, 93(2): 224-232. |
[48] | WINNIER G, BLESSING M, LABOSKY P A, et al.. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse[J]. Genes Dev., 1995, 9(17): 2105-2116. |
[49] | PARK C, AFRIKANOVA I, CHUNG Y S, et al.. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells[J]. Development, 2004, 131(11): 2749-2762. |
[50] | LIU Y, CHEN Q, WJEONG H, et al.. A specialized bone marrow microenvironment for fetal haematopoiesis[J/OL]. Nat. Commun., 2022, 13(1): 1327[2025-04-10]. . |
[51] | KOBAYASHI I, KOBAYASHI S J, HIRAKAWA Y, et al.. Dual role of Jam3b in early hematopoietic and vascular development[J/OL]. Development, 2020, 147(1): dev181040[2025-04-10]. . |
[52] | CIMATO T, BEERS J, DING S, et al.. Neuropilin-1 identifies endothelial precursors in human and murine embryonic stem cells before CD34 expression[J]. Circulation, 2009, 119(16): 2170-2178. |
[53] | IKUSHIMA Y M, ARAI F, NAKAMURA Y, et al.. Enhanced Angpt1/Tie2 signaling affects the differentiation and long-term repopulation ability of hematopoietic stem cells[J]. Biochem. Biophys. Res. Commun., 2013, 430(1): 20-25. |
[54] | MA W, QIN Y, CHAPUY B, et al.. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells[J/OL]. PLoS ONE, 2019, 14(10): e0213482[2025-04-10]. . |
[55] | MA D, SUN Y, LIN D, et al.. CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization[J]. Eur. J. Haematol., 2005, 74(3): 228-240. |
[56] | KOJIMA H, KANADA H, SHIMIZU S, et al.. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells[J]. J. Biol. Chem., 2003, 278(38): 36748-36753. |
[1] | 王尚尚, 薛贞雅, 邢海燕, 杨雪, 王敏, 饶青. 基于小鼠白血病模型探究不同定居部位对白血病细胞干性的影响[J]. 生物技术进展, 2025, 15(2): 349-354. |
[2] | 梁一鹏, 王迪, 宋昊泽, 石莉红, 佟静媛. 生物信息学分析鉴定骨髓增殖性肿瘤发生发展的免疫调控因子[J]. 生物技术进展, 2024, 14(3): 492-500. |
[3] | 刘勤勤, 黄柏铭, 马叶子, 刘翠翠, 王洪涛, 周家喜. 急性感染条件下巨核细胞与血小板转录组变化的对比分析[J]. 生物技术进展, 2023, 13(3): 465-472. |
[4] | 王迪, 赵艳红, 梁一鹏, 宋昊泽, 石莉红, 佟静媛. CXCL2在巨核细胞分化过程中的功能研究[J]. 生物技术进展, 2023, 13(2): 257-263. |
[5] | 肖方楠, 吕雪, 袁佳佳, 张明英, 邢文, 周圆. 造血干细胞移植条件对小鼠造血重建的影响[J]. 生物技术进展, 2023, 13(1): 124-130. |
[6] | 徐奔, 覃锐, 向航, 许京淑, 廖子龙, 向金平. 臭椿酮抑制急性骨髓性白血病细胞恶性生物学行为的研究[J]. 生物技术进展, 2022, 12(5): 769-777. |
[7] | 李敏敏, 夏美娟, 赵晶晶, 陈肖源, 刘翠翠, 苏培, 王洪涛, 周家喜. 人类胚胎期和成年期巨核细胞的分子特征比较[J]. 生物技术进展, 2022, 12(4): 577-583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部