生物技术进展 ›› 2025, Vol. 15 ›› Issue (1): 50-57.DOI: 10.19586/j.2095-2341.2024.0153
收稿日期:
2024-09-22
接受日期:
2024-10-24
出版日期:
2025-01-25
发布日期:
2025-03-07
通讯作者:
李岩异
作者简介:
庞晓敏E-mail: pxm15612772767@163.com;
基金资助:
Received:
2024-09-22
Accepted:
2024-10-24
Online:
2025-01-25
Published:
2025-03-07
Contact:
Yanyi LI
摘要:
蛋白质作为生命的物质基础,是生命活动的主要载体。针对下游工艺,不断开发出新的配体纯化技术,能够更安全、经济、高效地去除复杂蛋白质样品中的各种杂质。归纳了具有不同配体的介质材料(包括疏水配体、离子交换配体、混合模式配体和短肽仿生配体)和蛋白质分离技术(包括聚合物接枝技术和连续柱层析技术)的研究现状、创新应用及其发展前景,以期在蛋白质纯化过程中获取有效资源,为下游纯化技术发展提供参考。
中图分类号:
庞晓敏, 李岩异. 基于不同配体的蛋白质纯化技术的研究与应用[J]. 生物技术进展, 2025, 15(1): 50-57.
Xiaomin PANG, Yanyi LI. Research and Application of Protein Purification Technology Based on Different Ligands[J]. Current Biotechnology, 2025, 15(1): 50-57.
配体类型 | 配体名称 | 基架 | 作用机制 | 应用 | 参考文献 |
---|---|---|---|---|---|
亲和配体 | 蛋白A | 醛基功能化二氧化硅微球 | 提供较大的表面积,结合容量 | 从兔血清中分离IgG的纯度高于95% | [ |
甲氧基聚乙二醇2000-氨基 | 磁性纳米颗粒 | 中和pH和盐浓度对IgG选择性的影响 | 从胎牛血清中分离IgG的纯度96%;从细胞培养上清液中分离奥马珠单抗的纯度为99% | [ | |
L-His | 环氧基、羰基二咪唑和乙二胺整体柱 | 排除流速对结合容量的影响,发挥组氨酸柱的稳定性和可重复使用性,实现对抗体的高通量纯化 | IgG最大吸附量分别为12.11±0.17、15.85±0.18和 19.83±0.25 mg·mL-1 | [ | |
仿生肽配体 | 3,5-二-叔丁基-4-羟基苯甲酸-精氨酸-精氨酸-甘氨酸 | 功能化的整体柱 | 发挥整体柱高孔隙率和可及性,提供更高的动态结合容量 | 从生物样品中纯化曲妥珠单抗或hIgG,动态结合容量高达34.6 mg·mL-1 | [ |
FYWHCLDE | 琼脂糖凝胶6FF | 减少由HCP引起的单克隆抗体聚集 | 单克隆抗体回收率高于68.7% | [ | |
疏水配体 | 聚(N-乙烯基己内酰胺) | 再生纤维素纳米纤维 | 发挥粗纤维和更开放孔隙结构,提供更高的结合容量 | 可实现约25 mg·mL-1的静态结合容量和超过30 mg·mL-1的动态结合容量 | [ |
丁基或苯基修饰的聚烯丙胺 | 疏水改性的高度交联纤维素珠 | 疏水基团的结构影响单克隆抗体的产率 | 直接与特定的阳离子交换色谱步骤联用,实现单克隆抗体产率>93% | [ | |
混合模式配体 | 环氧氯丙烷、高碘酸钠、二乙烯基砜 | 纤维素微珠 | 发挥非芳香族部分配体结构具有的较强的HCP去除能力 | 可将HCP水平降低3个数量级以提高单克隆抗体精制过程中的宿主杂质去除率 | [ |
疏水电荷诱导配体 | 4-乙烯基吡啶 | 新型石墨烯复合材料 | 抑制共存蛋白质在石墨烯基底上的非特异性吸附 | 对IgG表现出高选择性。pH 7.4时,IgG吸附效率达90%,吸附容量为500 mg·g⁻¹ | [ |
β-吲哚基乙胺 | 再生纤维素 | 保留介质pH依赖性和耐盐性 | 有效地混合溶液中分离纯度为88%的IgG | [ | |
固化离子配体 | CO2+ | 基于丝瓜络海绵的吸附剂 | 脱木质素处理提高吸附容量和选择性 | 对重组组氨酸标签海藻糖合酶的最大吸附容量为2.04±0.14 mg·g-1,比对照提高73% | [ |
Ni2+ | 多孔壳聚糖膜 | 发挥多孔壳聚糖膜高孔隙率镍吸附量的优势 | 对带有组氨酸标签尾的重组β-神经生长因子(β-NGF)进行纯化,纯度超过78% | [ | |
Ti4⁺ | 仿生蜂窝状壳聚糖膜 | 提供良好的亲水性和更好的生物相容性 | 用于富集人体血清中的磷酸肽,从而用于研究基因本体分析、胃癌患者的生物过程、细胞组分和分子功能 | [ |
表1 新型配体在蛋白质纯化中的作用与应用
Table 1 Functions and applications of new ligands in protein purification
配体类型 | 配体名称 | 基架 | 作用机制 | 应用 | 参考文献 |
---|---|---|---|---|---|
亲和配体 | 蛋白A | 醛基功能化二氧化硅微球 | 提供较大的表面积,结合容量 | 从兔血清中分离IgG的纯度高于95% | [ |
甲氧基聚乙二醇2000-氨基 | 磁性纳米颗粒 | 中和pH和盐浓度对IgG选择性的影响 | 从胎牛血清中分离IgG的纯度96%;从细胞培养上清液中分离奥马珠单抗的纯度为99% | [ | |
L-His | 环氧基、羰基二咪唑和乙二胺整体柱 | 排除流速对结合容量的影响,发挥组氨酸柱的稳定性和可重复使用性,实现对抗体的高通量纯化 | IgG最大吸附量分别为12.11±0.17、15.85±0.18和 19.83±0.25 mg·mL-1 | [ | |
仿生肽配体 | 3,5-二-叔丁基-4-羟基苯甲酸-精氨酸-精氨酸-甘氨酸 | 功能化的整体柱 | 发挥整体柱高孔隙率和可及性,提供更高的动态结合容量 | 从生物样品中纯化曲妥珠单抗或hIgG,动态结合容量高达34.6 mg·mL-1 | [ |
FYWHCLDE | 琼脂糖凝胶6FF | 减少由HCP引起的单克隆抗体聚集 | 单克隆抗体回收率高于68.7% | [ | |
疏水配体 | 聚(N-乙烯基己内酰胺) | 再生纤维素纳米纤维 | 发挥粗纤维和更开放孔隙结构,提供更高的结合容量 | 可实现约25 mg·mL-1的静态结合容量和超过30 mg·mL-1的动态结合容量 | [ |
丁基或苯基修饰的聚烯丙胺 | 疏水改性的高度交联纤维素珠 | 疏水基团的结构影响单克隆抗体的产率 | 直接与特定的阳离子交换色谱步骤联用,实现单克隆抗体产率>93% | [ | |
混合模式配体 | 环氧氯丙烷、高碘酸钠、二乙烯基砜 | 纤维素微珠 | 发挥非芳香族部分配体结构具有的较强的HCP去除能力 | 可将HCP水平降低3个数量级以提高单克隆抗体精制过程中的宿主杂质去除率 | [ |
疏水电荷诱导配体 | 4-乙烯基吡啶 | 新型石墨烯复合材料 | 抑制共存蛋白质在石墨烯基底上的非特异性吸附 | 对IgG表现出高选择性。pH 7.4时,IgG吸附效率达90%,吸附容量为500 mg·g⁻¹ | [ |
β-吲哚基乙胺 | 再生纤维素 | 保留介质pH依赖性和耐盐性 | 有效地混合溶液中分离纯度为88%的IgG | [ | |
固化离子配体 | CO2+ | 基于丝瓜络海绵的吸附剂 | 脱木质素处理提高吸附容量和选择性 | 对重组组氨酸标签海藻糖合酶的最大吸附容量为2.04±0.14 mg·g-1,比对照提高73% | [ |
Ni2+ | 多孔壳聚糖膜 | 发挥多孔壳聚糖膜高孔隙率镍吸附量的优势 | 对带有组氨酸标签尾的重组β-神经生长因子(β-NGF)进行纯化,纯度超过78% | [ | |
Ti4⁺ | 仿生蜂窝状壳聚糖膜 | 提供良好的亲水性和更好的生物相容性 | 用于富集人体血清中的磷酸肽,从而用于研究基因本体分析、胃癌患者的生物过程、细胞组分和分子功能 | [ |
1 | HONDIUS D C, EIGENHUIS K N, MORREMA T H J, et al.. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer's disease[J/OL]. Acta Neuropathol. Commun., 2018, 6(1): 46[2024-10-15]. . |
2 | 杨懿祺, 张志高, 游小龙, 等. 抗体药物的发展与应用[J]. 生物技术进展,2022,12(3): 358-365. |
YANG Y Q, ZHANG Z G, YOU X L, et al.. Development and application of monoclonal antibody-based drug[J]. Curr. Biotechnol., 2022, 12(3):358-365. | |
3 | KITTLER S, EBNER J, BESLEAGA M, et al.. Recombinant protein L: production, purifcation and characterization of a universal binding ligand[J]. J. Biotechnol., 2022, 359: 108-115. |
4 | LIU S X, LI Z H, YU B, et al.. Recent advances on protein separation and purification methods[J/OL]. Adv. Colloid Interface Sci., 2020, 284: 102254 [2024-10-15]. . |
5 | SALIMI K, USTA D D, KOÇER İ, et al.. Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G[J/OL]. Int. J. Biol. Macromol., 2018, 111: 178-185. |
6 | CHENG F, FENG Q C, HE W, et al.. Preparation and characterization of PEGylated thiophilic nanoparticles for rapid antibody separation[J]. Chin. J. Anal. Chem., 2018, 46(12): 1953-1960. |
7 | PRASANNA R R, KAMALANATHAN A S, VIJAYALAKSHMI M A. Development of L-histidine immobilized CIM(®) monolithic disks for purification of immunoglobulin G[J]. J. Mol. Recognit., 2015, 28(3): 129-141. |
8 | WANG X Y, XIA D H, HAN H, et al.. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification[J]. Anal. Chim. Acta, 2018, 1017: 57-65. |
9 | HUANG H T, DONG X Y, SUN Y, et al.. Biomimetic affinity chromatography for antibody purification: host cell protein binding and impurity removal[J/OL]. J. Chromatogr. A, 2023, 1707: 464305[2024-10-15]. . |
10 | CHEN S T, WICKRAMASINGHE S R, QIAN X. Electrospun hydrophobic interaction chromatography (HIC) membranes for protein purification[J/OL]. Membranes, 2022, 12(7): 714[2024-10-15]. . |
11 | AOYAMA S, MATSUMOTO Y, MORI C, et al.. Application of novel mixed mode chromatography (MMC) resins having a hydrophobic modified polyallylamine ligand for monoclonal antibody purification[J/OL]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2022, 1191: 123072[2024-10-15]. . |
12 | MORI C, IWAMOTO E, KADOI K, et al.. Impact of ligand structure and base bead pore size on host cell protein removal during monoclonal antibody purification using multimodal chromatography resin[J/OL]. J. Chromatogr. A, 2024, 1732: 465202[2024-10-15]. . |
13 | LIU J, LIU X, LIU Y, et al.. Pseudo-mercaptoethyl pyridine functionalized polyhedral oligomeric silsesquioxane-graphene composite via thiol-ene click reaction for highly selective purification of antibody[J/OL]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2022, 1208: 123408[2024-10-15]. . |
14 | GUO M Y, YE J L, ZHENG C Y, et al.. Dual-recognition membrane Adsorbers combining hydrophobic charge-induction chromatography with surface imprinting via multicomponent reaction[J/OL]. J. Chromatogr. A, 2022, 1668: 462918[2024-10-15]. . |
15 | THAKHAM N, HUANG P H, LI K Y, et al.. Effect of delignification on the adsorption of loofah sponge-based immobilized metal affinity chromatography adsorbent for His-tagged trehalose synthase[J]. J. Biosci. Bioeng., 2024, 138(5): 445-451. |
16 | HAJIHASSAN Z, GHAEE A, BAZARGANNIA P, et al.. Affinity purification/immobilization of poly histidine-tagged proteins by nickel-functionalized porous chitosan membranes[J/OL]. J. Chromatogr. A, 2024, 1722: 464902[2024-10-15]. . |
17 | ZHANG X Y, CHEN J K, SHENG X Q, et al.. Preparation and characterization of a biomimetic honeycomb cross-linked chitosan membrane and its application in the serum of gastric cancer patients[J/OL]. Int. J. Biol. Macromol., 2024, 279: 135367[2024-10-15]. . |
18 | CUATRECASAS P, WILCHEK M. Single-step purifcation of avidine from egg white by afnity chromatography on biocytinSepharose columns[J]. Biochem. Biophys. Res. Commun., 1968, 33: 235-239. |
19 | 彭晓燕, 陆盼盼, 胡祖权. 新型冠状病毒RBD蛋白原核表达及多克隆抗体的制备[J]. 生物技术进展, 2023,13(1):102-106. |
PENG X Y, LU P P, HU Z Q. Prokaryotic expression of the RBD protein of SARS-CoV-2 and its polyclonal antibodies preparation[J]. Curr. Biotechnol., 2023, 13(1): 102-106. | |
20 | RODRIGUEZ E L, PODDAR S, IFTEKHAR S, et al.. Affinity chromatography: a review of trends and developments over the past 50 years[J/OL]. J. Infect. Public Health, 2020, 1157: 122332[2024-10-15]. . |
21 | ZARRINEH M, MASHHADI I S, FARHADPOUR M, et al.. Mechanism of antibodies purifcation by protein A[J/OL]. Anal. Biochem., 2020, 609: 113909[2024-09-22]. . |
22 | HAGEMANN F, ADAMETZ P, WESSLING M, et al.. Modeling hindered difusion of antibodies in agarose beads considering pore size reduction due to adsorption[J/OL]. J. Chromatogr. A, 2020, 1626: 461319[2024-09-22]. . |
23 | WANG Y, ZHANG X F, HAN N Y, et al.. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support[J]. Int. J. Biol. Macromol., 2018, 120:100-108. |
24 | AGARWAL G, NAIK R R, STONE M O. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography[J]. J. Am. Chem. Soc., 2003, 125(24): 7408-7412. |
25 | 王海宁, 刘兴健, 高新桃, 等. SARS-CoV-2中和性纳米抗体的原核表达及中和活性检测[J]. 生物技术进展, 2022, 12(5):754-759. |
WANG H N, LIU X J, GAO X T, et al.. Prokaryotic expression and neutralization activity detection of SARS-CoV-2 neutralizing nanobody[J]. Curr. Biotechnol., 2022, 12(5): 754-759. | |
26 | ZHENG H W, WEI F Y, TIAN J J, et al.. Preparation of nickel-chelated iminodiacetate-functionalized macroporous agarose monolith using modular and clickable building blocks for affinity separation of histidine-tagged recombinant proteins[J/OL]. J. Chromatogr. A, 2022, 1682: 463509[2024-10-15]. . |
27 | YUAN W M, ZHANG W J, MA F L, et al.. IFN-λ1 in CHO cells: its expression and biological activity[J/OL]. Cell Mol. Biol. Lett., 2017, 22: 26[2024-10-15]. . |
28 | REITER K, AGUILAR P P, WETTER V, et al.. Separation of virus-like particles and extracellular vesicles by flow-through and heparin affinity chromatography[J]. J. Chromatogr. A, 2019, 1588: 77-84. |
29 | PIETROCOLA G, RINDI S, NOBILE G, et al.. Purification of human plasma/cellular fibronectin and fibronectin fragments[J]. Meth. Mol. Biol. (Clifton N J), 2017, 1627: 309-324. |
30 | CHI H, TIAN S, LI X, et al.. Construction of lipid raft-coupled agarose gels as bioafnity chromatography materials and validation with tropomyosin-related kinase A-targeted drugs[J/OL]. J. Chromatogr. A., 2023, 1691:463803[2024-09-22]. . |
31 | HOU Z, HAN X, WANG Z, et al.. A terminal alkyne and disulfde functionalized agarose resin specifcally enriches azidohomoalanine labeled nascent proteins[J/OL]. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1165:122527 [2024-09-22]. . |
32 | KING C, PATEL R, PONNIAH G, et al.. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis[J]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2018, 1085: 96-103. |
33 | RODLER A, BEYER B, UEBERBACHER R, et al.. Hydrophobic interaction chromatography of proteins: studies of unfolding upon adsorption by isothermal titration calorimetry[J]. J. Sep. Sci., 2018, 41(15): 3069-3080. |
34 | YANG Y X, CHEN Y C, YAO S J, et al.. Parameter-by-parameter estimation method for adsorption isotherm in hydrophobic interaction chromatography[J/OL]. J. Chromatogr. A, 2024, 1716:464638[2024-10-15]. . |
35 | EVANS C, MORIMITSU Y, NISHI R, et al.. Novel hydrophobically modifed agarose cryogels fabricated using dimethyl sulfoxide[J]. J. Biosci. Bioeng., 2022, 133(4):390-395. |
36 | CUMMINS P M, ROCHFORT K D, O'CONNOR B F. Ion-exchange chromatography: basic principles and application[J]. Meth. Mol. Biol. (Clifton N J), 2017, 1485: 209-223. |
37 | LOU Y, JI G R, LIU Q, et al.. Secretory expression and scale-up production of recombinant human thyroid peroxidase via baculovirus/insect cell system in a wave-type bioreactor[J]. Protein Expr. Purif., 2018, 149: 7-12. |
38 | SANCHEZ-REYES G, GRAALFS H, HAFNER M, et al.. Mechanistic modeling of ligand density variations on anion exchange chromatography[J]. J. Sep. Sci., 2021, 44(4): 805-821. |
39 | JING S Y, GOU J X, GAO D, et al.. Separation of monoclonal antibody charge variants using cation exchange chromatography: resins and separation conditions optimization[J]. Sep. Purif. Technol., 2020, 235: 116136. |
40 | HUANG C, WANG Y, XU X, et al.. Hydrophobic property of cation-exchange resins afects monoclonal antibody aggregation[J/OL]. J. Chromatogr. A, 2020, 1631: 461573[2024-09-22]. . |
41 | ROBERTS J A, KIMERER L, CARTA G. Efects of molecule size and resin structure on protein adsorption on multimodal anion exchange chromatography media[J/OL]. J. Chromatogr. A, 2020, 1628: 461444[2024-10-11]. . |
42 | LI M T, ZOU X J, ZHANG Q L, et al.. Binding mechanism of functional moieties of a mixed-mode ligand in antibody purification[J/OL]. Chem. Eng. J., 2020, 400: 125887[2024-10-15]. . |
43 | GU J L, PI W Y, XIE W F, et al.. Improved antibody adsorption performance of phenylbased mixed-mode adsorbents by adjusting the functional group of ligand[J/OL]. Biochem. Eng. J., 2021, 176: 108092[2024-09-22]. . |
44 | LI M, LIN D, YAO S, et al.. Study on antibody adsorption and elution performance of carboxyl and hydrophobic groups on mixed-mode ligands[J]. J. Sep. Sci., 2022, 45(15): 2946-2955. |
45 | AOYAMA S, MATSUMOTO Y, MORI C, et al.. Application of novel mixed mode chromatography (MMC) resins having a hydrophobic modified polyallylamine ligand for monoclonal antibody purification[J/OL]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2022, 1191: 123072[2024-10-15]. . |
46 | SHI W, ZHANG T Y, FANG C Y, et al.. Transforming waste into valuables: preparation and evaluation of dual-ligand hydrophobic charge-induction chromatography using two poor performing ligands[J/OL]. J. Chromatogr. A, 2024, 1726: 464975[2024-10-15]. . |
47 | YE J L, ZHANG Y F, MENG J Q. Protein-ligand interactions for hydrophobic charge-induction chromatography:a QCM-D study[J/OL]. Appl. Surf. Sci., 2022, 572: 151420[2024-10-15]. . |
48 | FANG Y M, LIN D Q, YAO S J. Review on biomimetic afnity chromatography with short peptide ligands and its application to protein purification[J]. J. Chromatogr. A, 2018, 1571: 1-15. |
49 | ZOU X J, ZHANG Q L, LU H L, et al.. Development of a hybrid biomimetic ligand with high selectivity and mild elution for antibody purification[J]. Chem. Eng. J., 2019, 368: 678-686. |
50 | FANG Y M, CHEN S G, LIN D Q, et al.. A new tetrapeptide biomimetic chromatographic resin for antibody separation with high adsorption capacity and selectivity[J/OL]. J. Chromatogr. A, 2019, 1604: 460474[2024-10-15]. . |
51 | FANG Y M, ZHANG Q L, LIN D Q, et al.. One kind of challenging tetrapeptide biomimetic chromatographic resin for antibody separation[J/OL]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2022, 1208: 123407[2024-10-15]. . |
52 | FANG Y M, ZHU H Y, LIN D Q, et al.. A novel dextrangrafted tetrapeptide resin for antibody purification[J]. J. Sep. Sci., 2018, 43(19): 3816-3823. |
53 | HAO D X, ZHANG R Y, GE J, et al.. Rapid and high-capacity loading of IgG monoclonal antibodies by polymer brush and peptides functionalized microspheres[J/OL]. J. Chromatogr. A, 2021, 1640: 461948[2024-10-15]. . |
54 | GU J L, ZHANG Y, TONG H F, et al.. Preparation and evaluation of dextran-grafted mixed-mode chromatography adsorbents[J]. J. Chromatogr. A, 2019, 1599: 1-8. |
55 | QIAO L Z, DU Y C, DU K F. Grafting diethylaminoethyl dextran to macroporous cellulose microspheres:a protein anion exchanger of high capacity and fast uptake rate[J]. Sep. Purif. Technol., 2022, 297: 121434. |
56 | YANG O, PRABHU S, IERAPETRITOU M. Comparison between batch and continuous monoclonal antibody production and economic analysis[J]. Ind. Eng. Chem. Res., 2019, 58(15): 5851-5863. |
57 | CAPITO F, FLATO H, OEINCK V, et al.. Mimicking continuous capture chromatography for virus clearance using a single chromatography column model[J/OL]. Biotechnol. J., 2022, 17(5): e2100433[2024-10-15]. . |
58 | MATOS T, HOYING D, KRISTOPEIT A, et al.. Continuous multi-membrane chromatography of large viral particles[J/OL]. J. Chromatogr. A, 2023, 1705: 464194[2024-10-15]. . |
59 | LUO Y D, ZHANG Q L, YAO S J, et al.. Evaluation of adsorption selectivity of immunoglobulins M, A and G and purification of immunoglobulin M with mixed-mode resins[J]. J. Chromatogr. A, 2018, 1533: 77-86. |
60 | SUN Y N, SHI C, ZHANG Q L, et al.. Comparison of protein A afnity resins for twin-column continuous capture processes: process performance and resin characteristics[J/OL]. J. Chromatogr. A, 2021, 1654:462454[2024-09-22]. . |
61 | SUN Y N, SHI C, ZHONG X Z, et al.. Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography[J]. J. Chromatogr. A, 2022, 1677: 463311[2024-10-15]. . |
62 | SHI C, GAO Z Y, ZHANG Q L, et al.. Model-based process development of continuous chromatography for antibody capture:a case study with twin-column system[J]. J. Chromatogr. A, 2020, 1619: 460936[2024-10-15]. . |
[1] | 赵忠润,陈超,黄娇芳,俞峰,史吉平,孙俊松. 1398中性蛋白酶的色谱柱纯化与分子鉴定[J]. 生物技术进展, 2014, 4(3): 201-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部