生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 1042-1054.DOI: 10.19586/j.2095-2341.2024.0092
收稿日期:
2024-04-29
接受日期:
2024-05-22
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
王明连
作者简介:
康茜 E-mail: kangx@emails.bjut.edu.cn;
基金资助:
Xi KANG(), Ziyu LIN, Yishu YANG, Jintao LI, Minglian WANG(
)
Received:
2024-04-29
Accepted:
2024-05-22
Online:
2024-11-25
Published:
2024-12-27
Contact:
Minglian WANG
摘要:
RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase, RdRp)在新型冠状病毒——严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)复制中发挥重要作用,是主要的抗病毒靶点。RdRp的功能严格依赖其空间结构,而关键氨基酸位点的突变可能导致空间结构和功能的改变。为了探究对SARS-CoV-2原型株有效的RdRp抑制剂是否对Omicron变异株仍存在抑制效果,对我国近两年流行的Omicron变异株的913个RdRp优质序列进行多序列比对。与原型株相比,这些Omicron变异株的RdRp序列既存在同义突变又存在错义突变。在错义突变中,除少数低频突变位点外,44%为P323L,34%为P323L和G671S双重突变,12%为P323L、G671S和D63N三重突变,分别将包含这3类突变的Omicron RdRp归为1_RdRp、2_RdRp和3_RdRp。利用AlphaFold2构建这3类RdRp的蛋白质结构模型,并通过PyMOL将Omicron与原型株的RdRp结构进行叠合比对,结果显示3类蛋白质3D结构均与原型株的RdRp(6M71_RdRp)高度重叠,提示突变未对RdRp的空间结构产生显著影响。在此基础上,将3种Omicron RdRp蛋白模型分别与4种已报道的RdRp抑制剂对接,结果显示这4种抑制剂依然能稳定结合在各Omicron RdRp模型的活性中心,提示RdRp是一个长期有效的靶标。基于此,构建的细胞外RdRp酶活反应和检测体系将有助于靶向RdRp的抗病毒药物的评价或筛选。
中图分类号:
康茜, 林姿妤, 杨怡姝, 李劲涛, 王明连. 新型冠状病毒Omicron RdRp的变异分析及其活性反应体系构建[J]. 生物技术进展, 2024, 14(6): 1042-1054.
Xi KANG, Ziyu LIN, Yishu YANG, Jintao LI, Minglian WANG. Variation Analysis of SARS-CoV-2 Omicron RdRp and Construction of its Active Reaction System[J]. Current Biotechnology, 2024, 14(6): 1042-1054.
分支 | 低频错义突变位点 | 序列号 |
---|---|---|
BA.2 | N507I、F694Y | EPI_ISL_16923349 |
BA.2.12.1 | A253V | EPI_ISL_12812554 |
S433G | EPI_ISL_14226909 | |
I696V | EPI_ISL_12315615 | |
BA.5 | N88S | C_AA011039.1、C_AA021207.1、EPI_ISL_17775683 |
T141I | EPI_ISL_15679848 | |
L247F | C_AA003174.1、C_AA003375.1、C_AA007149.1、C_AA007379.1、C_AA007675.1、C_AA007687.1、C_AA008584.1、C_AA012664.1、C_AA013792.1、C_AA015837.1、EPI_ISL_16634016、EPI_ISL_16709169、EPI_ISL_16955401、EPI_ISL_17199703、EPI_ISL_17307371、EPI_ISL_17490482、EPI_ISL_17775462 | |
L247F、T739I | C_AA010715.1 | |
V257F | EPI_ISL_16327678 | |
M463V | EPI_ISL_13140517 | |
V473F | C_AA001486.1 | |
Y479H、F480L | C_AA005712.1 | |
Y521C | EPI_ISL_16327492 | |
R651C | EPI_ISL_16854471 | |
G672S | C_AA037046.1 | |
A771V | EPI_ISL_17581363 | |
Q822H | EPI_ISL_16922574 | |
XBB.1.5 | G671S、D63N | EPI_ISL_17999279 |
G671S、K160N | C_AA035703.1 | |
G671S、W162C | EPI_ISL_18060791 | |
G671S、P169S | EPI_ISL_17770420、EPI_ISL_18060868 | |
G671S、A250V | EPI_ISL_18208365 | |
G671S、A250V、T806I | C_AA041899.1 | |
G671S、V299F | EPI_ISL_18040229 | |
G671S、F317L | EPI_ISL_17762877 | |
G671S、V320M | EPI_ISL_17816964 | |
G671S、N734S | EPI_ISL_17696976、EPI_ISL_18105830、EPI_ISL_18161005、EPI_ISL_18217155 | |
G671S、N743D | C_AA017934.1、C_AA026969.1、C_AA027243.1、C_AA027499.1、C_AA031571.1、EPI_ISL_17735939、EPI_ISL_17801950、EPI_ISL_17808433、EPI_ISL_17836704、EPI_ISL_17978440 | |
XBB.1.16 | G671S、S6P | C_AA032258.1 |
G671S、D40A | C_AA037478.1、EPI_ISL_18074400 | |
G671S、A46S | C_AA030394.1 | |
G671S、K91R | C_AA026796.1、EPI_ISL_18074225 | |
G671S、N198T | C_AA037503.1 | |
G671S、T226M | C_AA041901.1 | |
G671S、T226M、V848I | EPI_ISL_18208356 | |
G671S、T248I | C_AA029090.1、C_AA038338.1 | |
G671S、T252I | EPI_ISL_18208460 | |
G671S、T262K | C_AA036945.1 | |
G671S、T293I | C_AA014710.1、C_AA027341.1、C_AA033549.1、C_AA042222.1、C_AA043434.1、C_AA043493.1、EPI_ISL_18208043、EPI_ISL_18213311 | |
G671S、T293I、V848I | C_AA042222.1 | |
G671S、N781S | C_AA038411.1、EPI_ISL_18105657 | |
G671S、G823S | C_AA030861.1 | |
G671S、V848I | C_AA014495.1、EPI_ISL_17736476 | |
G671S、H882R | C_AA013559.1 | |
G671S、R914K | C_AA043432.1 | |
XBB.1.9 | G671S、T586A | C_AA018119.1 |
EG.5.1 | G671S、D63N、A97V | EPI_ISL_18208463 |
G671S、D63N、V128I | EPI_ISL_18166323 | |
G671S、D63N、L323F | EPI_ISL_18208580 | |
G671S、D63N、V848I | C_AA027550.1 | |
G671S、N64D | EPI_ISL_18066441 |
表1 Omicron变异株RdRp氨基酸序列中低频错义突变位点汇总
Table 1 All low frequency missense mutations in the amino acid sequences of RdRp from Omicron
分支 | 低频错义突变位点 | 序列号 |
---|---|---|
BA.2 | N507I、F694Y | EPI_ISL_16923349 |
BA.2.12.1 | A253V | EPI_ISL_12812554 |
S433G | EPI_ISL_14226909 | |
I696V | EPI_ISL_12315615 | |
BA.5 | N88S | C_AA011039.1、C_AA021207.1、EPI_ISL_17775683 |
T141I | EPI_ISL_15679848 | |
L247F | C_AA003174.1、C_AA003375.1、C_AA007149.1、C_AA007379.1、C_AA007675.1、C_AA007687.1、C_AA008584.1、C_AA012664.1、C_AA013792.1、C_AA015837.1、EPI_ISL_16634016、EPI_ISL_16709169、EPI_ISL_16955401、EPI_ISL_17199703、EPI_ISL_17307371、EPI_ISL_17490482、EPI_ISL_17775462 | |
L247F、T739I | C_AA010715.1 | |
V257F | EPI_ISL_16327678 | |
M463V | EPI_ISL_13140517 | |
V473F | C_AA001486.1 | |
Y479H、F480L | C_AA005712.1 | |
Y521C | EPI_ISL_16327492 | |
R651C | EPI_ISL_16854471 | |
G672S | C_AA037046.1 | |
A771V | EPI_ISL_17581363 | |
Q822H | EPI_ISL_16922574 | |
XBB.1.5 | G671S、D63N | EPI_ISL_17999279 |
G671S、K160N | C_AA035703.1 | |
G671S、W162C | EPI_ISL_18060791 | |
G671S、P169S | EPI_ISL_17770420、EPI_ISL_18060868 | |
G671S、A250V | EPI_ISL_18208365 | |
G671S、A250V、T806I | C_AA041899.1 | |
G671S、V299F | EPI_ISL_18040229 | |
G671S、F317L | EPI_ISL_17762877 | |
G671S、V320M | EPI_ISL_17816964 | |
G671S、N734S | EPI_ISL_17696976、EPI_ISL_18105830、EPI_ISL_18161005、EPI_ISL_18217155 | |
G671S、N743D | C_AA017934.1、C_AA026969.1、C_AA027243.1、C_AA027499.1、C_AA031571.1、EPI_ISL_17735939、EPI_ISL_17801950、EPI_ISL_17808433、EPI_ISL_17836704、EPI_ISL_17978440 | |
XBB.1.16 | G671S、S6P | C_AA032258.1 |
G671S、D40A | C_AA037478.1、EPI_ISL_18074400 | |
G671S、A46S | C_AA030394.1 | |
G671S、K91R | C_AA026796.1、EPI_ISL_18074225 | |
G671S、N198T | C_AA037503.1 | |
G671S、T226M | C_AA041901.1 | |
G671S、T226M、V848I | EPI_ISL_18208356 | |
G671S、T248I | C_AA029090.1、C_AA038338.1 | |
G671S、T252I | EPI_ISL_18208460 | |
G671S、T262K | C_AA036945.1 | |
G671S、T293I | C_AA014710.1、C_AA027341.1、C_AA033549.1、C_AA042222.1、C_AA043434.1、C_AA043493.1、EPI_ISL_18208043、EPI_ISL_18213311 | |
G671S、T293I、V848I | C_AA042222.1 | |
G671S、N781S | C_AA038411.1、EPI_ISL_18105657 | |
G671S、G823S | C_AA030861.1 | |
G671S、V848I | C_AA014495.1、EPI_ISL_17736476 | |
G671S、H882R | C_AA013559.1 | |
G671S、R914K | C_AA043432.1 | |
XBB.1.9 | G671S、T586A | C_AA018119.1 |
EG.5.1 | G671S、D63N、A97V | EPI_ISL_18208463 |
G671S、D63N、V128I | EPI_ISL_18166323 | |
G671S、D63N、L323F | EPI_ISL_18208580 | |
G671S、D63N、V848I | C_AA027550.1 | |
G671S、N64D | EPI_ISL_18066441 |
图 1 3类Omicron RdRp与原型SARS-CoV-2 RdRp氨基酸序列的多序列比对
Fig. 1 MSA of amino acid sequences among three classes of Omicron RdRp and the protype SARS-CoV-2 RdRp
图 2 Omicron RdRp蛋白质3D结构与6M71_RdRp晶体结构的分子叠合结果
Fig. 2 Molecular superposition results of the Omicron RdRp protein 3D structure and the 6M71_RdRp crystal structure
图 3 Omicron 1_RdRp蛋白质3D结构的质量评价结果A: ERRAT结果;B: 拉氏图;C: Verify3D结果;D: ModFOLD 8结果
Fig. 3 The quality assessment results of the Omicron 1_RdRp protein model
图 4 Omicron 2_RdRp蛋白质3D结构的质量评价结果A: ERRAT结果;B: 拉氏图;C: Verify3D结果;D: ModFOLD 8 结果
Fig. 4 The quality assessment results of the Omicron 2_RdRp protein model
图 5 Omicron 3_RdRp蛋白质3D结构的质量评价结果A: ERRAT结果;B: 拉氏图;C: Verify3D结果;D: ModFOLD 8 结果
Fig. 5 The quality assessment results of the Omicron 3_RdRp protein model
图 7 Omicron RdRp蛋白与GS-5734、EIDD-2801、OP4、Suramin的最佳对接模型
Fig. 7 The best docked models' visualization of different Omicron RdRp proteins with GS-5734, EIDD-2801, OP4 and Suramin
图 8 Omicron RdRp蛋白与GS-5734、EIDD-2801、OP4、Suramin相互作用的氨基酸残基
Fig. 8 The interacting residues of different Omicron RdRp proteins with GS-5734, EIDD-2801, OP4 and Suramin
RdRp模型 | 抑制剂 | 最低结合能/(kcal·mol-1) | 氢键个数 | 涉及氨基酸残基 |
---|---|---|---|---|
1_RdRp | GS-5734 | -7.2 | 6 | Asn496、Asn497、Arg569、Gln573、Lys577、Asp684 |
OP4 | -8.2 | 7 | Thr556、Asp623、Asp760、Cys813、Ser814、Asp865 | |
EIDD-2801 | -7.0 | 3 | Tyr38、Lys73、Asp221 | |
Suramin | -11.1 | 14 | Tyr456、Asn496、Arg555、Thr556、Arg569、Gln573、Lys577、Arg624、Thr680、Ser682、Ala685 | |
2_RdRp | GS-5734 | -7.1 | 8 | Ile494、Asn496、Asn497、Arg569、Gln573、Lys577、Asp684 |
OP4 | -8.1 | 8 | Thr556、Thr591、Asp623、Thr680、Ser682、Asn691 | |
EIDD-2801 | -7.2 | 6 | Lys47、Ser709、Thr710、Gln773、Asn781 | |
Suramin | -11.1 | 11 | Arg553、Arg555、Thr556、Ala558、Lys621、Asp623、Arg624、Ser682、Asp761 | |
3_RdRp | GS-5734 | -7.6 | 6 | His133、Asn138、Ser709、Asn781、Lys780 |
OP4 | -8.0 | 8 | Thr556、Thr591、Asp623、Thr680、Ser682、Asn691 | |
EIDD-2801 | -7.1 | 5 | Tyr38、Lys73、Asn209、Asp218、Asp221 | |
Suramin | -10.8 | 11 | Lys500、Arg553、Arg555、Gln573、Lys621、Cys622、Gly683、Ala688 |
表2 Omicron RdRp与4种抑制剂对接的最低结合能及相互作用氨基酸残基
Table 2 Minimum binding energy and interacting amino acid residues of Omicron RdRp docking with four inhibitors
RdRp模型 | 抑制剂 | 最低结合能/(kcal·mol-1) | 氢键个数 | 涉及氨基酸残基 |
---|---|---|---|---|
1_RdRp | GS-5734 | -7.2 | 6 | Asn496、Asn497、Arg569、Gln573、Lys577、Asp684 |
OP4 | -8.2 | 7 | Thr556、Asp623、Asp760、Cys813、Ser814、Asp865 | |
EIDD-2801 | -7.0 | 3 | Tyr38、Lys73、Asp221 | |
Suramin | -11.1 | 14 | Tyr456、Asn496、Arg555、Thr556、Arg569、Gln573、Lys577、Arg624、Thr680、Ser682、Ala685 | |
2_RdRp | GS-5734 | -7.1 | 8 | Ile494、Asn496、Asn497、Arg569、Gln573、Lys577、Asp684 |
OP4 | -8.1 | 8 | Thr556、Thr591、Asp623、Thr680、Ser682、Asn691 | |
EIDD-2801 | -7.2 | 6 | Lys47、Ser709、Thr710、Gln773、Asn781 | |
Suramin | -11.1 | 11 | Arg553、Arg555、Thr556、Ala558、Lys621、Asp623、Arg624、Ser682、Asp761 | |
3_RdRp | GS-5734 | -7.6 | 6 | His133、Asn138、Ser709、Asn781、Lys780 |
OP4 | -8.0 | 8 | Thr556、Thr591、Asp623、Thr680、Ser682、Asn691 | |
EIDD-2801 | -7.1 | 5 | Tyr38、Lys73、Asn209、Asp218、Asp221 | |
Suramin | -10.8 | 11 | Lys500、Arg553、Arg555、Gln573、Lys621、Cys622、Gly683、Ala688 |
图 9 RdRp酶活性检测结果A:荧光检测结果;B:非变性琼脂糖凝胶电泳结果;C:qPCR检测酶活反应产物的熔解曲线;D:qPCR检测酶活反应产物的扩增曲线。Control—对照组;RdRp—实验组;Marker—DNA Marker;****表示差异在P<0.000 1水平上具有统计学意义。
Fig. 9 Results of RdRp enzyme activity assay
1 | DAVIES N G, ABBOTT S, BARNARD R C, et al.. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England[J/OL]. Science, 2021, 372(6538): eabg3055[2024-03-25]. . |
2 | TEGALLY H, WILKINSON E, GIOVANETTI M, et al.. Detection of a SARS-CoV-2 variant of concern in South Africa[J]. Nature, 2021, 592(7854): 438-443. |
3 | SABINO E C, BUSS L F, CARVALHO M P S, et al.. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence[J]. Lancet Lond. Engl., 2021, 397(10273): 452-455. |
4 | CALLAWAY E. Delta coronavirus variant: scientists brace for impact[J]. Nature, 2021, 595(7865): 17-18. |
5 | VIANA R, MOYO S, AMOAKO D G, et al.. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa[J]. Nature, 2022, 603(7902): 679-686. |
6 | MEO S A, MEO A S, AL-JASSIR F F, et al.. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics[J]. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(24): 8012-8018. |
7 | HADFIELD J, MEGILL C, BELL S M, et al.. Nextstrain: real-time tracking of pathogen evolution[J]. Bioinform. Oxf. Engl., 2018, 34(23): 4121-4123. |
8 | XIA S, WANG L, ZHU Y, et al.. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages[J/OL]. Signal Transduct. Target. Ther., 2022, 7(1): 241[2024-03-25]. . |
9 | HOSSAIN A, AKTER S, RASHID A A, et al.. Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: potential impacts on viral pathogenesis and host immune evasion[J/OL]. Microb. Pathog., 2022, 170: 105699[2024-03-25]. . |
10 | 孔庆福,马晓洁,刘凤凤,等.2023年6月中国需关注的突发公共卫生事件风险评估[J].疾病监测,2023,38(6):631-635. |
KONG Q F, MA X J, LIU F F, et al.. Risk assessment of public health emergencies concerned in China, June 2023[J]. Dis. Surveill., 2023, 38(6): 631-635. | |
11 | 笃梦雪,严明明,李蔓兮,等.2023年9月中国需关注的突发公共卫生事件风险评估[J].疾病监测,2023,38(9):1025-1028. |
DU M X, YAN M M, LI M X, et al.. Risk assessment of public health emergencies concerned in China, September 2023[J]. Dis. Surveill., 2023, 38(9): 1025-1028. | |
12 | 王盼盼,冯晔囡,白文清,等.2023年11月中国需关注的突发公共卫生事件风险评估[J].疾病监测,2023,38(11):1285-1288. |
WANG P P, FENG Y N, BAI W Q, et al.. Risk assessment of public health emergencies concerned in China, November 2023[J]. Dis. Surveill., 2023, 38(11): 1285-1288. | |
13 | ZHU W, CHEN C Z, GORSHKOV K, et al.. RNA-dependent RNA polymerase as a target for COVID-19 drug discovery[J]. SLAS Discov., 2020, 25(10): 1141-1151. |
14 | MAJUMDAR P, NIYOGI S. SARS-CoV-2 mutations: the biological trackway towards viral fitness[J/OL]. Epidemiol. Infect., 2021, 149: e110[2024-03-25]. . |
15 | YURKOVETSKIY L, WANG X, PASCAL K E, et al.. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant[J]. Cell, 2020, 183(3): 739-751. |
16 | MALONE B, URAKOVA N, SNIJDER E J, et al.. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design[J]. Nat. Rev. Mol. Cell Biol., 2022, 23(1): 21-39. |
17 | BAI C, ZHONG Q, GAO G F. Overview of SARS-CoV-2 genome-encoded proteins[J]. Sci. China Life Sci., 2022, 65(2): 280-294. |
18 | MIN J S, KIM G-W, KWON S, et al.. A cell-based reporter assay for screening inhibitors of MERS coronavirus RNA-dependent RNA polymerase activity[J/OL]. J. Clin. Med., 2020, 9(8): 2399[2024-03-25]. . |
19 | SONG S, MA L, ZOU D, et al.. The global landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVR[J]. Genom. Proteom. Bioinform., 2020, 18(6): 749-759. |
20 | Members and Partnerscncb-NGDC. Database resources of the national genomics data center, China national center for bioinformation in 2023[J/OL]. Nucleic Acids Res., 2023, 51(D1): D18-D28[2024-03-25]. . |
21 | CHEN M, MA Y, WU S, et al.. Genome warehouse: a public repository housing genome-scale data[J]. Genom. Proteom. Bioinform., 2021, 19(4): 584-589. |
22 | KHARE S, GURRY C, FREITAS L, et al.. GISAID's role in pandemic response[J]. China CDC Week., 2021, 3(49): 1049-1051. |
23 | GAO Y, YAN L, HUANG Y, et al.. Structure of the RNA-dependent RNA polymerase from COVID-19 virus[J]. Science, 2020, 368(6492): 779-782. |
24 | COLOVOS C, YEATES T O. Verification of protein structures: patterns of nonbonded atomic interactions[J]. Protein Sci., 1993, 2(9): 1511-1519. |
25 | LÜTHY R, BOWIE J U, EISENBERG D. Assessment of protein models with three-dimensional profiles[J]. Nature, 1992, 356(6364): 83-85. |
26 | LASKOWSKI R A, RULLMANNN J A, MACARTHUR M W, et al.. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR[J]. J. Biomol. NMR, 1996, 8(4): 477-486. |
27 | MCGUFFIN L J, ALDOWSARI F M F, ALHARBI S M A, et al.. ModFOLD8: accurate global and local quality estimates for 3D protein models[J/OL]. Nucleic Acids Res., 2021, 49(W1): W425-W430[2024-03-25]. . |
28 | YIN W, MAO C, LUAN X, et al.. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir[J]. Science, 2020, 368(6498): 1499-1504. |
29 | JIANG Y, YIN W, XU H E. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19[J]. Biochem. Biophys. Res. Commun., 2021, 538: 47-53. |
30 | BEIGEL J H, TOMASHEK K M, DODD L E, et al.. Remdesivir for the treatment of covid-19 - final report[J]. N. Engl. J. Med., 2020, 383(19): 1813-1826. |
31 | 苏小进,王明连,袁润余,等.登革病毒RdRp配体寡肽潜在广谱靶向作用研究[J].国际病毒学杂志,2022,29(4):286-291. |
SU X J, WANG M L, YUAN R Y, et al.. Potential broad-spectrum targeting effects of the ligand oligopeptide of dengue virus RdRp[J]. Int. J. Virol., 2022, 29(4): 286-291. | |
32 | AGOSTINI M L, PRUIJSSERS A J, CHAPPELL J D, et al.. Small-molecule antiviral β-d-N 4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance[J]. J. Virol., 2019, 93(24): e01348-19. |
33 | FISCHER W A, ERON J J, HOLMAN W, et al.. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus[J/OL]. Sci. Transl. Med., 2022, 14(628): eabl7430 [2024-03-25]. . |
34 | YIN W, LUAN X, LI Z, et al.. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin[J]. Nat. Struct. Mol. Biol., 2021, 28(3): 319-325. |
35 | WU F, ZHAO S, YU B, et al.. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265-269. |
36 | 杨高松,马东杰.呼吸道传染病治疗中抗体药物的研发进展[J].生物技术进展,2020,10(5):441-447. |
YANG G S, MA D J. Progress in research and development of antibodies for treatment of respiratory infectious diseases[J]. Curr. Biotechnol., 2020, 10(5): 441-447. | |
37 | 杨懿祺,张志高,游小龙,等.抗体药物的发展与应用[J].生物技术进展,2022,12(3):358-365. |
YANG Y Q, ZHANG Z G, YOU X L, et al.. Development and application of monoclonal antibody-based drug[J]. Curr. Biotechnol., 2022, 12(3): 358-365. | |
38 | MCDONALD S M. RNA synthetic mechanisms employed by diverse families of RNA viruses[J]. Wiley Interdiscip. Rev. RNA, 2013, 4(4): 351-367. |
39 | PICARAZZI F, VICENTI I, SALADINI F, et al.. Targeting the RdRp of emerging RNA viruses: the structure-based drug design challenge[J/OL]. Molecules, 2020, 25(23): 5695[2024-03-25]. . |
40 | LI Q, YI D, LEI X, et al.. Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase[J]. Acta Pharm. Sin. B, 2021, 11(6): 1555-1567. |
41 | BAI X, SUN H, WU S, et al.. Identifying small-molecule inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase by establishing a fluorometric assay[J/OL]. Front. Immunol., 2022, 13: 844749[2024-03-25]. . |
[1] | 柯昌虎, 吴亚晴, 丁雪茹, 黄慧敏, 严慧. 基于网络药理学和分子对接探讨金银花口服液防治新型冠状病毒感染的作用机制[J]. 生物技术进展, 2023, 13(5): 807-817. |
[2] | 董峰, 皇甫秉欣, 徐佳, 许文涛. 基于网络药理学探究薏苡仁干预脂肪性肝病的机制[J]. 生物技术进展, 2023, 13(2): 264-272. |
[3] | 孙婧,刘丹,慧文其. 计算机模拟设计治疗急性关节炎的秋水仙碱生物电子等排抑制剂研究[J]. 生物技术进展, 2019, 9(1): 84-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部