1 |
BRUNT E M. Pathology of fatty liver disease[J]. Mod. Pathol., 2007, 20(1): 40-48.
|
2 |
SINGH S, OSNA N A, KHARBANDA K K. Treatment options for alcoholic and non-alcoholic fatty liver disease: a review[J/OL]. World J. Gastroenterol., 2017, 23(36): 6549[2022-12-10]. .
|
3 |
CHARATCHAROENWITTHAYA P, LIANGPUNSAKUL S, PIRATVISUTH T. Alcohol-associated liver disease: east versus west[J]. Clin. Liver Dis., 2020, 16(6): 231-235.
|
4 |
MOKDAD A H, FOROUZANFAR M H, DAOUD F, et al.. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the global burden of disease study 2013[J]. Lancet, 2016, 387(10036): 2383-2401.
|
5 |
朱冰.重症酒精性肝炎治疗进展[J].实用肝脏病杂志,2016,19(1):117-120.
|
6 |
ZENG J, YANG R X, SUN C, et al.. Prevalence, clinical characteristics, risk factors, and indicators for lean Chinese adults with nonalcoholic fatty liver disease[J]. World J. Gastroenterol., 2020, 26(15): 1792-1804.
|
7 |
FAN J G, KIM S U, WONG V W S. New trends on obesity and NAFLD in Asia[J]. J. Hepatol., 2017, 67(4): 862-873.
|
8 |
唐俊.棕榈油酸与中国儿童青少年肥胖和高血压的关系及机理研究[D]. 杭州:浙江大学,2018.
|
9 |
DAY C. Genes or environment to determine alcoholic liver disease and non‐alcoholic fatty liver disease[J]. Liver Int., 2006, 26(9): 1021-1028.
|
10 |
李岩异,吕娜,陈金利,等.大豆蛋白源性肽调节糖脂代谢机制研究进展[J].生物技术进展,2022,12(6):853-860.
|
11 |
杨阳,杜疏炀,孙艺琦,等.不同产地薏苡中有效成分甘油三油酸酯和薏苡素的测定[J].中草药,2017,48(3):578-581.
|
12 |
王国玮.除湿抗癌薏苡仁[J].保健医苑,2017,(5):30-33.
|
13 |
IGBOKWE C J, WEI M, FENG Y, et al.. Coix seed: a review of its physicochemical composition, bioactivity, processing, application, functionality, and safety aspects[J]. Food Rev. Int., 2022, 38(supl):921-939.
|
14 |
毛新亮,张卉,陈文杰,等.薏苡仁多菌发酵液的菌种优选及其抑制黑色素生成的作用研究[J].生物技术进展,2022,12(6): 929-936.
|
15 |
CHEN L C, ZHANG S Y, ZI Y, et al.. Functional Coix seed protein hydrolysates as a novel agent with potential hepatoprotective effect[J]. Food Funct., 2020, 11(11): 9495-9502.
|
16 |
LIU S, LI F, ZHANG X. Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice[J]. Appl. Microbiol. Biotechnol., 2019, 103(13): 5311-5321.
|
17 |
KIM S O, YUN S J, JUNG B, et al.. Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-α and leptin mRNA expressions and serum lipid levels[J]. Life Sci., 2004, 75(11): 1391-1404.
|
18 |
CHOI E K, CHO Y J, YANG H J, et al.. Coix seed extract attenuates the high-fat induced mouse obesity via PPAR γ and C/EBP α a downregulation[J]. Mol. Cell. Toxicol., 2015, 11(2): 213-221.
|
19 |
姚志山,吴云,张文静,等.酒精性肝病患者的中医体质特征分析[J].中西医结合肝病杂志,2021,31(3):213-215.
|
20 |
SHI T, WU L, MA W, et al.. Nonalcoholic fatty liver disease: pathogenesis and treatment in traditional Chinese medicine and western medicine[J/OL]. J. Evidence-Based Complementary Altern. Med., 2020, 2020: 8749564[2022-12-11]. .
|
21 |
樊舒瑶,沈泳,谢小红.基于网络药理学研究薏苡仁活性成分在乳腺癌中的作用及其机制[J].药物生物技术,2021, 28(3):245-253.
|
22 |
潘秋,张志清,田聪阳,等.基于网络药理学分析荷叶调脂的有效成分及药理作用[J].中华中医药杂志,2021, 36(6):3195-3200.
|
23 |
杜叶青,段治康,董舒卉,等.基于网络药理学的金银花活性成分抗炎作用机制的研究[J].中国药物化学杂志,2019, 29(2):96-102.
|
24 |
RU J, LI P, WANG J, et al.. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J. Cheminf., 2014, 6(1): 1-6.
|
25 |
LIU X, OUYANG S, YU B, et al.. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach[J]. Nucl. Acids Res., 2010, 38(2): 609-614.
|
26 |
WANG X, PAN C, GONG J, et al.. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs[J]. J. Chem. Inf. Model., 2016, 56(6): 1175-1183.
|
27 |
WANG X, SHEN Y, WANG S, et al.. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucl. Acids Res., 2017, 45(W1): 356-360.
|
28 |
BAUER-MEHREN A, RAUTSCHKA M, SANZ F, et al.. DisGeNET: a cytoscape plugin to visualize, integrate, search and analyze gene-disease networks[J]. Bioinf., 2010, 26(22): 2924-2926.
|
29 |
BAUER-MEHREN A, BUNDSCHUS M, RAUTSCHKA M, et al.. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases[J/OL]. PLoS ONE, 2011, 6(6): e20284[2022-12-11]. .
|
30 |
PIÑERO J, RAMÍREZ-ANGUITA J M, SAÜCH-PITARCH J, et al.. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucl. Acids Res., 2020, 48(D1): 845-855.
|
31 |
CHEN K, MA Z, YAN X, et al.. Investigation of the lipid-lowering mechanisms and active ingredients of Danhe granule on hyperlipidemia based on systems pharmacology[J/OL]. Front. Pharmacol., 2020, 11: 528[2022-12-11]. .
|
32 |
杨佳龙.桃核承气汤配合红曲于台湾地区高血脂症的临床研究[D]. 南京:南京中医药大学,2017.
|
33 |
KUMARIHAMY M, LEÓN F, PETTAWAY S, et al.. In vitro opioid receptor affinity and in vivo behavioral studies of Nelumbo nucifera flower[J]. J. Ethnopharmacol., 2015, 174: 57-65.
|
34 |
LIU Y, GRIMM M, DAI W T, et al.. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking[J]. Acta Pharmacol. Sin., 2020, 41(1): 138-144.
|
35 |
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J/OL]. PLoS ONE, 2013, 8(12): e83922[2022-12-11]. .
|
36 |
于天怡,焦广洋,黄豆豆,等.基于UHPLC-Q-TOF/MS和网络药理学分析肺炎二号方预防新冠肺炎的有效成分和机制[J]. 中国临床药理学与治疗学,2021,26(10):1127-1145.
|
37 |
WU D, CEDERBAUM A I. Alcohol, oxidative stress, and free radical damage[J]. Alcohol Res. Health, 2003, 27(4): 277-284.
|
38 |
TESSARI P, CORACINA A, COSMA A, et al.. Hepatic lipid metabolism and non-alcoholic fatty liver disease[J]. Nutr., Metab. Cardiovasc. Dis., 2009, 19(4): 291-302.
|
39 |
SCHWINGEL P A, COTRIM H P, SALLES B R, et al.. Anabolic-androgenic steroids: a possible new risk factor of toxicant-associated fatty liver disease[J]. Liver Int., 2011, 31(3): 348-353.
|
40 |
范建高.代谢综合征与脂肪肝[J].国外医学:内分泌学分册,2002,22(5):273-275.
|
41 |
谢滟,杨伟文.雌激素诱导妊娠急性脂肪肝的血脂和肝脏形态变化的实验研究[J].中华围产医学杂志,2000, 3(2):103-104.
|
42 |
范建高.中国脂肪肝的研究[J].世界华人消化杂志,2001,9(1):6-10.
|
43 |
王华宁,温伟波.肝源性糖尿病临床研究进展[J].实用肝脏病杂志,2003,2003(1):59-60.
|
44 |
崔晓霞,段桂花,吕井华.非酒精性脂肪肝与动脉粥样硬化相关的临床研究[J].现代保健:医学创新研究,2007,4: 26-27.
|
45 |
FALLOWFIELD J A, HAYDEN A L, SNOWDON V K, et al.. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo[J]. Hepatol., 2014, 59(4): 1492-1504.
|
46 |
NORMANNO N, DE LUCA A, BIANCO C, et al.. Epidermal growth factor receptor (EGFR) signaling in cancer[J]. Gene, 2006, 366(1): 2-16.
|
47 |
LIANG D, CHEN H, ZHAO L, et al.. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease[J]. Biochim. Biophys. Acta, Mol. Basis Dis., 2018, 1864(1): 133-142.
|
48 |
BHUSHAN B, BANERJEE S, PARANJPE S, et al.. Pharmacologic inhibition of epidermal growth factor receptor suppresses nonalcoholic fatty liver disease in a murine fast‐food diet model[J]. Hepatol., 2019, 70(5): 1546-1563.
|
49 |
MING LEUNG T, LU Y, YAN W, et al.. Argininosuccinate synthase conditions the response to acute and chronic ethanol‐induced liver injury in mice[J]. Hepatol., 2012, 55(5): 1596-1609.
|
50 |
NASR H B, DIMASSI S, M'HADHBI R, et al.. Functional G894T (rs1799983) polymorphism and intron-4 VNTR variant of nitric oxide synthase (NOS3) gene are susceptibility biomarkers of obesity among Tunisians[J]. Obes. Res. Clin. Pract., 2016, 10(4): 465-475.
|
51 |
JO J, WHITCOMB D J, OLSEN K M, et al.. Aβ 1-42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β[J]. Nat. Neurosci., 2011, 14(5): 545-547.
|
52 |
REYES-GORDILLO K, SHAH R, ARELLANES-ROBLEDO J, et al.. Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease[J/OL]. Cells, 2019, 8(11): 1337[2022-12-11]. .
|
53 |
CHENG K K, AKASAKI Y, LECOMMANDEUR E, et al.. Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation[J]. J. Proteome Res., 2015, 14(1): 342-352.
|
54 |
HAN J W, ZHAN X R, LI X Y, et al.. Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats[J]. World J. Gastroenterol., 2010, 16(48): 6111-6118.
|
55 |
SCHRIEBER S J, WEN Z, VOURVAHIS M, et al.. The pharmacokinetics of silymarin is altered in patients with hepatitis C virus and nonalcoholic fatty liver disease and correlates with plasma caspase-3/7 activity[J]. Drug Metab. Dispos., 2008, 36(9): 1909-1916.
|
56 |
MCKIM S E, GÄBELE E, ISAYAMA F, et al.. Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice[J]. Gastroenterol., 2003, 125(6): 1834-1844.
|
57 |
NANJI A A, GREENBERG S S, TAHAN S R, et al.. Nitric oxide production in experimental alcoholic liver disease in the rat: role in protection from injury[J]. Gastroenterol., 1995, 109(3): 899-907.
|
58 |
CHEN Z, WU A, JIN H, et al.. β-Sitosterol attenuates liver injury in a rat model of chronic alcohol intake[J]. Arch. Pharmacal Res., 2020, 43(11): 1197-1206.
|
59 |
YIN H M, WANG S N, NIE S P, et al.. Coix polysaccharides: gut microbiota regulation and immunomodulatory[J]. Bioact. Carbohydr. Diet. Fibre, 2018, 16: 53-61.
|
60 |
徐梓辉,周世文.薏芯仁多糖对四氧嘧啶致大鼠胰岛β细胞损伤的保护作用[J].中国药理学通报,2000,16(6):639-642.
|