生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 496-502.DOI: 10.19586/j.2095-2341.2021.0082
收稿日期:
2021-05-11
接受日期:
2021-06-09
出版日期:
2021-07-25
发布日期:
2021-08-02
通讯作者:
刘柱
作者简介:
刘超伦 E-mail:lcl15872@163.com;
基金资助:
Received:
2021-05-11
Accepted:
2021-06-09
Online:
2021-07-25
Published:
2021-08-02
Contact:
Zhu LIU
摘要:
反式翻译(trans?translation)是细菌翻译质量控制的关键,几乎存在于所有细菌之中。反式翻译系统由转移信使mRNA(tmRNA)和小蛋白B(SmpB)组成,能够拯救因翻译不终止mRNA (non?stop mRNA)而滞留的核糖体。此外,反式翻译还能够调控特定基因的表达水平,参与细菌的应激反应。概括了细菌反式翻译系统近年来最新的研究进展,阐明反式翻译识别与拯救滞留核糖体的分子机制,归纳了反式翻译的功能及应用前景,以期为相关研究提供参考。
中图分类号:
刘超伦, 刘柱. 细菌反式翻译系统[J]. 生物技术进展, 2021, 11(4): 496-502.
Chaolun LIU, Zhu LIU. Trans‑translation System in Bacterial[J]. Current Biotechnology, 2021, 11(4): 496-502.
1 | LAURSEN B S, SORENSEN H P, MORTENSEN K K, et al.. Initiation of protein synthesis in bacteria[J]. Microbiol. Mol. Biol. Rev., 2005,69(1):101-123. |
2 | UEDA K, YAMAMOTO Y, OGAWA K, et al.. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs[J]. Genes Cells, 2002,7(5):509-519. |
3 | ABO T, UEDA K, SUNOHARA T, et al.. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli [J]. Genes Cells, 2002,7(7):629-638. |
4 | BANDYRA K J, LUISI B F. Licensing and due process in the turnover of bacterial RNA[J]. RNA Biol., 2013,10(4):627-635. |
5 | LI X, HIRANO R, TAGAMI H, et al.. Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling[J]. RNA, 2006,12(2):248-255. |
6 | LI X, YOKOTA T, ITO K, et al.. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli [J]. Mol. Microbiol., 2007,63(1):116-126. |
7 | ZAHER H S, GREEN R. Quality control by the ribosome following peptide bond formation[J]. Nature, 2009,457(7226):161-166. |
8 | GARZA-SANCHEZ F, SHOJI S, FREDRICK K, et al.. RNase II is important for A-site mRNA cleavage during ribosome pausing[J]. Mol. Microbiol., 2009,73(5):882-897. |
9 | ITO K, CHADANI Y, NAKAMORI K, et al.. Nascentome analysis uncovers futile protein synthesis in Escherichia coli [J/OL]. PLoS ONE, 2011,6(12):e28413[2021-06-09]. . |
10 | MOORE S D, SAUER R T. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli [J]. Mol. Microbiol., 2005,58(2):456-466. |
11 | BUSKIRK A R, GREEN R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes[J/OL]. Philos. Trans. R Soc. Lond B Biol. Sci., 2017,372(1716):20160183[2021-06-09]. . |
12 | DEFENOUILLERE Q, FROMONT-RACINE M. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance[J]. Curr. Genet., 2017,63(6):997-1005. |
13 | VIVANCO-DOMINGUEZ S, BUENO-MARTINEZ J, LEON-AVILA G, et al.. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons[J]. J. Mol. Biol., 2012,417(5):425-439. |
14 | HUDSON C M, LAU B Y, WILLIAMS K P. Ends of the line for tmRNA-SmpB[J/OL]. Front. Microbiol., 2014,5:421[2021-06-09]. . |
15 | HUANG C, WOLFGANG M C, WITHEY J, et al.. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability[J]. EMBO J., 2000,19(5):1098-1107. |
16 | RAMADOSS N S, ZHOU X, KEILER K C. tmRNA is essential in Shigella flexneri [J]. PLoS ONE, 2013,8(2):e57537[2021-06-09]. . |
17 | KEILER K C, FEAGA H A. Resolving nonstop translation complexes is a matter of life or death[J]. J. Bacteriol., 2014,196(12):2123-2130. |
18 | COLLINS L J, BIGGS P J. RNA networks in prokaryotes II: tRNA processing and small RNAs[J]. Adv. Exp. Med. Biol., 2011,722:221-230. |
19 | KOMINE Y, KITABATAKE M, YOKOGAWA T, et al.. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli [J]. Proc. Natl. Acad. Sci. USA, 1994,91(20):9223-9227. |
20 | MILLER M R, BUSKIRK A R. An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue[J]. RNA, 2014,20(2):228-235. |
21 | BARENDS S, BJORK K, GULTYAEV A P, et al.. Functional evidence for D- and T-loop interactions in tmRNA[J]. FEBS Lett., 2002,514(1):78-83. |
22 | ROOVERS M, DROOGMANS L, GROSJEAN H. Post-transcriptional modifications of conserved nucleotides in the T-loop of tRNA: a tale of functional convergent evolution[J/OL]. Genes (Basel), 2021,12(2):140[2021-07-10]. . |
23 | MOORE S D, SAUER R T. The tmRNA system for translational surveillance and ribosome rescue[J]. Annu. Rev. Biochem., 2007,76:101-124. |
24 | WATTS T, CAZIER D, HEALEY D, et al.. SmpB contributes to reading frame selection in the translation of transfer-messenger RNA[J]. J. Mol. Biol., 2009,391(2):275-281. |
25 | PENG M, CAO X, TANG Y, et al.. Large-scale identification of trans-translation substrates targeted by tmRNA in Aeromonas veronii [J/OL]. Microb. Pathog., 2020,145:104226[2021-06-09]. . |
26 | NAMEKI N, TADAKI T, HIMENO H, et al.. Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs[J]. FEBS Lett., 2000,470(3):345-349. |
27 | TANNER D R, DEWEY J D, MILLER M R, et al.. Genetic analysis of the structure and function of transfer messenger RNA pseudoknot 1[J]. J. Biol. Chem., 2006,281(15):10561-10566. |
28 | SHARKADY S M, WILLIAMS K P. A third lineage with two-piece tmRNA[J]. Nucl. Acids Res., 2004,32(15):4531-4538. |
29 | WOWER I K, ZWIEB C, WOWER J. Requirements for resuming translation in chimeric transfer-messenger RNAs of Escherichia coli and Mycobacterium tuberculosis [J/OL]. BMC Mol. Biol., 2014,15:19[2021-06-09]. . |
30 | GUTMANN S, HAEBEL P W, METZINGER L, et al.. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB[J]. Nature, 2003,424(6949):699-703. |
31 | SOMEYA T, NAMEKI N, HOSOI H, et al.. Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus [J]. FEBS Lett., 2003,535(1-3):94-100. |
32 | BESSHO Y, SHIBATA R, SEKINE S, et al.. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA[J]. Proc. Natl. Acad. Sci. USA, 2007,104(20):8293-8298. |
33 | NEUBAUER C, GILLET R, KELLEY A C, et al.. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome[J]. Science, 2012,335(6074):1366-1369. |
34 | MILLER M R, BUSKIRK A R. An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue[J]. RNA, 2014,20(2):228-235. |
35 | RAE C D, GORDIYENKO Y, RAMAKRISHNAN V. How a circularized tmRNA moves through the ribosome[J]. Science, 2019,363(6428):740-744. |
36 | IVANOVA N, PAVLOV M Y, FELDEN B, et al.. Ribosome rescue by tmRNA requires truncated mRNAs[J]. J. Mol. Biol., 2004,338(1):33-41. |
37 | RAMRATH D J, YAMAMOTO H, ROTHER K, et al.. The complex of tmRNA-SmpB and EF-G on translocating ribosomes[J]. Nature, 2012,485(7399):526-529. |
38 | LEE S, ISHII M, TADAKI T, et al.. Determinants on tmRNA for initiating efficient and precise trans-translation: some mutations upstream of the tag-encoding sequence of Escherichia coli tmRNA shift the initiation point of trans-translation in vitro[J]. RNA, 2001,7(7):999-1012. |
39 | KONNO T, KURITA D, TAKADA K, et al.. A functional interaction of SmpB with tmRNA for determination of the resuming point of trans-translation[J]. RNA, 2007,13(10):1723-1731. |
40 | WEIS F, BRON P, GIUDICE E, et al.. tmRNA-SmpB: a journey to the centre of the bacterial ribosome[J]. EMBO J., 2010,29(22):3810-3818. |
41 | FU J, HASHEM Y, WOWER I, et al.. Visualizing the transfer-messenger RNA as the ribosome resumes translation[J]. EMBO J., 2010,29(22):3819-3825. |
42 | FLYNN J M, LEVCHENKO I, SEIDEL M, et al.. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis[J]. Proc. Natl. Acad. Sci. USA, 2001,98(19):10584-10589. |
43 | CHOY J S, AUNG L L, KARZAI A W. Lon protease degrades transfer-messenger RNA-tagged proteins[J]. J. Bacteriol., 2007,189(18):6564-6571. |
44 | FEI X, BELL T A, BARKOW S R, et al.. Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates[J/OL]. Elife, 2020,9:e61496[2021-06-09]. . |
45 | VENKATARAMAN K, ZAFAR H, KARZAI A W. Distinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay[J]. Nucl. Acids Res., 2014,42(17):11192-11202. |
46 | PEDERSEN K, ZAVIALOV A V, PAVLOV M Y, et al.. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site[J]. Cell, 2003,112(1):131-140. |
47 | CHAUDHURI R R, ALLEN A G, OWEN P J, et al.. Comprehensive identification of essential Staphylococcus aureus genes using transposon-mediated differential hybridisation (TMDH)[J/OL]. BMC Genom., 2009,10:291[2021-06-09]. . |
48 | PERSONNE Y, PARISH T. Mycobacterium tuberculosis possesses an unusual tmRNA rescue system[J]. Tuberculosis (Edinb), 2014,94(1):34-42. |
49 | MRAHEIL M A, FRANTZ R, TEUBNER L, et al.. Requirement of the RNA-binding protein SmpB during intracellular growth of Listeria monocytogenes [J]. Int. J. Med. Microbiol., 2017,307(3):166-173. |
50 | JULIO S M, HEITHOFF D M, MAHAN M J. ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis[J]. J. Bacteriol., 2000,182(6):1558-1563. |
51 | KRAMER G, BOEHRINGER D, BAN N, et al.. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins[J]. Nat. Struct. Mol. Biol., 2009,16(6):589-597. |
52 | MANN B, TVAN OPIJNEN, WANG J, et al.. Control of virulence by small RNAs in Streptococcus pneumoniae [J/OL]. PLoS Pathog., 2012,8(7):e1002788[2021-06-09]. . |
53 | SVETLANOV A, PURI N, MENA P, et al.. Francisella tularensis tmRNA system mutants are vulnerable to stress, avirulent in mice, and provide effective immune protection[J]. Mol. Microbiol., 2012,85(1):122-141. |
54 | SHIN J H, PRICE C W. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures[J]. J. Bacteriol., 2007,189(10):3729-3737. |
55 | BRITO L, WILTON J, FERRANDIZ M J, et al.. Absence of tmRNA has a protective effect against fluoroquinolones in Streptococcus pneumoniae [J/OL]. Front. Microbiol., 2016,7:2164[2021-06-09]. . |
56 | SHANMUGHAPRIYA V, RICHARD S, NAGARAJAN T, et al.. Ascribing a novel role for tmRNA of Escherichia coli in resistance to mitomycin C[J]. Future Microbiol., 2017,12:1381-1395. |
57 | KEILER K C, SHAPIRO L. TmRNA is required for correct timing of DNA replication in Caulobacter crescentus [J]. J. Bacteriol., 2003,185(2):573-580. |
58 | ABE T, SAKAKI K, FUJIHARA A, et al.. tmRNA-dependent trans-translation is required for sporulation in Bacillus subtilis [J]. Mol. Microbiol., 2008,69(6):1491-1498. |
59 | CHENG L, KEILER K C. Correct timing of dnaA transcription and initiation of DNA replication requires trans translation[J]. J. Bacteriol., 2009,191(13):4268-4275. |
60 | HAYES C S, KEILER K C. Beyond ribosome rescue: tmRNA and co-translational processes[J]. FEBS Lett., 2010,584(2):413-419. |
61 | ABO T, INADA T, OGAWA K, et al.. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon[J]. EMBO J., 2000,19(14):3762-3769. |
62 | RUHE Z C, HAYES C S. The N-terminus of GalE induces tmRNA activity in Escherichia coli [J/OL]. PLoS ONE, 2010,5(12):e15207[2021-06-09]. . |
63 | BARENDS S, ZEHL M, BIALEK S, et al.. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces [J]. EMBO Rep., 2010,11(2):119-125. |
64 | PENG M, CAO X, TANG Y, et al.. Large-scale identification of trans-translation substrates targeted by tmRNA in Aeromonas veronii [J/OL]. Microb. Pathog., 2020,145:104226[2021-06-09]. . |
65 | PEDERSEN K, ZAVIALOV A V, PAVLOV M Y, et al.. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site[J]. Cell, 2003,112(1):131-140. |
66 | ZHANG Y, ZHANG J, HOEFLICH K P, et al.. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli [J]. Mol. Cell, 2003,12(4):913-923. |
67 | LIU Y, WU N, DONG J, et al.. SsrA (tmRNA) acts as an antisense RNA to regulate Staphylococcus aureus pigment synthesis by base pairing with crtMN mRNA[J]. FEBS Lett., 2010,584(20):4325-4329. |
68 | WANG D, LI H, KHAN W U, et al.. SmpB and tmRNA orchestrate purine pathway for the trimethoprim resistance in Aeromonas veronii [J/OL]. Front. Cell Infect. Microbiol., 2020,10:239[2021-06-09]. |
69 | GINNESS K E MC, BAKER T A, SAUER R T. Engineering controllable protein degradation[J]. Mol. Cell, 2006,22(5):701-707. |
70 | GRIFFITH K L, GROSSMAN A D. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP[J]. Mol. Microbiol., 2008,70(4):1012-1025. |
71 | BROCKMAN I M, PRATHER K. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites[J]. Metab. Eng., 2015,28:104-113. |
72 | DAVIS J H, BAKER T A, SAUER R T. Small-molecule control of protein degradation using split adaptors[J]. ACS Chem. Biol., 2011,6(11):1205-1213. |
73 | DURANTE-RODRIGUEZ G, DE LORENZO V, NIKEL P I. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli [J]. ACS Synth. Biol., 2018,7(11):2686-2697. |
74 | RAMADOSS N S, ALUMASA J N, CHENG L, et al.. Small molecule inhibitors of trans-translation have broad-spectrum antibiotic activity[J]. Proc. Natl. Acad. Sci. USA, 2013,110(25):10282-10287. |
75 | SHI W, ZHANG X, JIANG X, et al.. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis [J]. Science, 2011,333(6049):1630-1632. |
76 | ALUMASA J N, GORALSKI T, KEILER K C. Tetrazole-based trans-translation inhibitors kill Bacillus anthracis spores to protect host cells[J/OL]. Antimicrob. Agents. Chemother., 2017,61(10):e01199-17[2021-06-09]. . |
77 | HUANG Y, ALUMASA J N, CALLAGHAN L T, et al.. A small-molecule inhibitor of trans-translation synergistically interacts with cathelicidin antimicrobial peptides to impair survival of Staphylococcus aureus [J]. Antimicrob. Agents Chemother., 2019,63(4):e02362-18[2021-06-09]. . |
78 | ARON Z D, MEHRANI A, HOFFER E D, et al.. Trans-translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo[J/OL]. Nat. Commun., 2021,12(1):1799[2021-07-10]. . |
[1] | 樊锦瑞, 王磊, 邹俊杰. PRNs基因家族研究进展[J]. 生物技术进展, 2022, 12(3): 325-331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部