1 |
杨璐. 农业生产化学除草技术的应用[J]. 广东蚕业, 2020, 54(12):85-86.
|
2 |
马启彬, 卢翔,杨策, 等. 转基因大豆及其安全性评价研究进展[J]. 安徽农业科学, 2020, 48(16):20-24, 51.
|
3 |
DUKE S O. Taking stock of herbicide-resistant crops ten years after introduction[J]. Pest Manag. Sci., 2005, 61(3):211-218.
|
4 |
谭巍巍, 王永斌, 赵远玲, 等. 全球转基因大豆发展概况[J]. 大豆科技, 2019(04):34-38.
|
5 |
MBATYOTI A, DANEEL M S, SWART A, et al.. Terrestrial non-parasitic nematode assemblages associated with glyphosate-tolerant and conventional soybean-based cropping systems[J]. J. Nematol., 2018, 50(3) :243-260.
|
6 |
HARRISON L A, BAILEY M R, NAYLOR M W, et al.. The expressed protein in glyphosate-tolerant soybean, 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice[J]. J. Nutr., 1996, 126(3) :728-740.
|
7 |
翁嘉慧, 楼亿圆, 徐京, 等. 转AM79-EPSPS基因抗草甘膦大豆遗传稳定性分析[J]. 农业生物技术学报, 2019, 27(09):1550-1559.
|
8 |
WANG X, HE X, ZOU S, et al.. A subchronic feeding study of dicamba-tolerant soybean with the dmo gene in Sprague-Dawley rats[J]. Regul. Toxicol. Pharmacol., 2016, 77:134-142.
|
9 |
Food Satety Commission of Japan. Soybean lines generated through cross-breeding of MON87705, MON87708 and MON89788 (genetically modified foods and feeds)[J]. Food Safety, 2016, 4(4) :169-172.
|
10 |
HERMAN R A, EKMAY R D, SCHAFER B W, et al.. Food and feed safety of DAS-444Ø6-6 herbicide-tolerant soybean[J]. Regul. Toxicol. Pharmacol., 2018, 94:70-74.
|
11 |
杨成凤, 高初蕾, 乔峰, 等. 耐除草剂转基因大豆商业化研发现状与展望[J]. 陕西农业科学, 2014, 60(5):53-55.
|
12 |
白韵旗, 程鹏, 武小霞, 等. 我国转基因大豆现状与相关法规[J]. 大豆科技, 2019(6):21-26.
|
13 |
陈景超, 崔海兰, 郭勇, 等. 抗草甘膦转基因大豆ZH10-6对几种除草剂的耐受性检测[J].杂草学报, 2020, 38(4):26-30.
|
14 |
翁嘉慧, 楼亿圆,徐京, 等. 转AM79-EPSPS基因耐草甘膦大豆的获得及功能验证[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6):675-684.
|
15 |
李娜, 曹越平. 转基因大豆SHZD32-01对草甘膦的抗性及草甘膦除草效果研究[J]. 大豆科学, 2018, 37(03):408-414.
|
16 |
BRYAN D, RICHARD E G, GREGORY S L. Food and feed safety of genetically engineered food crops[J]. Toxicol. Sci., 2018, 162(2):361-371.
|
17 |
PALKA-SANTINI M, SCHWARZ-HERZKE B, HÖSEL M, et al.. The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins[J]. Mol. Genet. Genom., 2003, 270(3):201-215.
|
18 |
王国磊, 刘晓宇. 转基因大豆食用安全性评价研究现状[J]. 农产品加工(学刊), 2010(8):74-76.
|
19 |
NORDLEE J A, TAYLOR S L, TOWNSEND J A, et al.. Identification of a Brazil-nut allergen in transgenic soybeans[J]. New England J. Med., 1996, 334(11):688-692.
|
20 |
STEN E, SKOV P S, ANDERSEN S B, et al.. A comparative study of the allergenic potency of wild-type and glyphosate-tolerant gene-modified soybean cultivars[J]. APMIS, 2004, 112(1):21-28.
|
21 |
VERHOECKX K, BROEKMAN H, KNULST A, et al.. Allergenicity assessment strategy for novel food proteins and protein sources[J]. Regul. Toxicol. Pharmacol., 2016, 79:118-124.
|
22 |
CYNTHIA C, STEPHEN G, XIAO C W. Soybean bioactive peptides and their functional properties[J/OL]. Nutrients, 2018, 10(9):1211[2021-06-01]. .
|
23 |
夏义苗, 陈复生, 郝莉花. 抗草甘膦大豆与非转基因大豆营养组成对比研究进展[J]. 中国油脂, 2017, 42(06):25-30.
|
24 |
肖培英. 耐草甘膦转基因大豆的获得及部分环境安全性研究[D]. 上海:上海交通大学,硕士学位论文, 2019.
|
25 |
中华人民共和国农业部. 转基因植物及其产品食用安全性评价导则 [S]. 北京: 农业部, 2006.
|
26 |
WANG C, GLENN K C, KESSENICH C, et al.. Safety assessment of dicamba mono-oxygenases that confer dicamba tolerance to various crops[J]. Regul. Toxicol. Pharmacol., 2016, 81:171-182.
|
27 |
SAKAMOTO Y, TADA Y, FUKUMORI N, et al.. A 52-week feeding study of genetically modified soybeans in F344 rats[J]. J. Food Hygienic Soc. Japan, 2007, 48(3):41-50.
|
28 |
SAKAMOTO Y, TADA Y, FUKUMORI N, et al.. A 104-week feeding study of genetically modified soybeans in F344 rats[J]. J. Food Hygienic Soc. Japan, 2008, 49(4):272-282.
|
29 |
ZHU Y, LI D, WANG F, et al.. Nutritional assessment and fate of DNA of soybean meal from roundup ready or conventional soybeans using rats[J]. Arch. Animal Nutr., 2004, 58(4):295-310.
|
30 |
SHI Z, ZOU S, LU C, et al.. Evaluation of the effects of feeding glyphosate-tolerant soybeans (CP4 EPSPS) on the testis of male Sprague-Dawley rats[J]. GM Crops Food, 2019, 10(3) :181-190.
|
31 |
BRAKE D G, EVENSON D P. A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development[J]. Food Chem. Toxicol. Int. J. Publish. British Indust. Biol. Res. Assoc., 2004, 42(1):29-36.
|
32 |
MANUELA M, CHIARA C, STEFANO G, et al.. Ultrastructural morphometrical and immunocytochemical analyses of hepatocyte nuclei from mice fed on genetically modified soybean[J]. Cell Struct. Funct., 2002, 27(4):173-180.
|
33 |
MALATESTA M, CAPORALONI C, ROSSI L, et al.. Ultrastructural analysis of pancreatic acinar cells from mice fed on genetically modified soybean[J]. J. Anatomy, 2002, 201(5):409-415
|
34 |
MALATESTA M, BIGGIOGERA M, MANUALI E, et al.. Fine structural analyses of pancreatic acinar cell nuclei from mice fed on genetically modified soybean[J]. Eur. J. Histochem., 2003, 47(4):385-388.
|
35 |
MALATESTA M, TIBERI C, BALDELLI B, et al.. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean[J]. Eur. J. Histochem., 2005, 49(3):237-242.
|
36 |
VECCHIO L, CISTERNA B, MALATESTA M, et al.. Ultrastructural analysis of testes from mice fed on genetically modified soybean[J]. Eur. J. Histochem., 2009, 48(4):448-454.
|
37 |
EFSA. Report of the EFSA GMO panel working group on animal feeding trials: safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials[J]. Food Chem. Toxicol., 2008, 46(1): S2-70.
|
38 |
MALATESTA M, BORALDI F, ANNOVI G, et al.. A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing[J]. Histochem. Cell Biol., 2008, 130(5):967-977.
|
39 |
JAVIER A M, GUILLERMO L C, YEPIZ-PLASCENCIA G, et al.. Pancreatic response of rats fed genetically modified soybean[J]. J. Appl. Toxicol., 2010, 28(2):217-226.
|
40 |
BURKS A W, FUCHS R L. Assessment of the endogenou s allergens in glyphosate-tolerant and commercial soybean varieties[J]. J. Allergy Clin. Immunol., 1995, 96:1008-1010.
|
41 |
BATISTA R, NUNES B, CARMO M, et al.. Lack of detectable allergenicity of transgenic maize and soya samples[J]. J. Allergy Clin. Immunol., 2005, 116(2):403-410
|
42 |
KAYOKO T, REIKO T, OSAMU N, et al.. Improved ELISA method for screening human antigen-specific IgE and its application for monitoring specific IgE for novel proteins in genetically modified foods[J]. Regul. Toxicol. Pharmacol., 2006, 44(2):182-188.
|
43 |
HOFF M, SON D Y, GUBESCH M, et al.. Serum testing of genetically modified soybeans with special emphasis on potential allergenicity of the heterologous protein CP4 EPSPS[J]. Mol. Nutr. Food Res., 2007, 51(8): 946-955.
|
44 |
ROUQUIÉ D, CAPT A, EBY W H, et al.. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach[J]. Regul. Toxicol. Pharmacol., 2010, 58(3):47-53.
|
45 |
MATSUO A, MATSUSHITA K, FUKUZUMI A, et al.. Comparison of various soybean allergen levels in genetically and non-genetically modified soybeans[J/OL]. Foods, 2020, 9(4):522[2021-06-01]. .
|
46 |
TESHIMA R, AKIYAMA H, OKUNUKI H, et al.. Effect of GM and non-GM soybeans on the immune system of BN rats and B10A mice[J]. J. Food Hygienic Soc. Japan, 2000, 41(3):188-193.
|
47 |
ROUQUIÉ D, CAPT A, EBY W H, et al.. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach[J]. Regul. Toxicol. Pharmacol., 2010, 58(3S):S47-S53.
|
48 |
PADGETTE S R, TAYLOR N B, NIDA D L, et al.. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans[J]. Narnia,1996, 126(3):702-716.
|
49 |
TAYLOR N B, FUCHS R L, MACDONALD J, et al.. Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate[J]. J. Agric. Food Chem., 1999, 47(10): 4469-4473.
|
50 |
HARRIGAN G G, CULLER A H, CULLER M, et al.. Investigation of biochemical diversity in a soybean lineage representing 35 years of breeding[J]. J. Agric. Food Chem., 2013, 61(45) :10807-10815.
|
51 |
MCCANN M C, LIU K, TRUJILLO W A, et al.. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing[J]. J. Agric. Food Chem., 2005, 53(13):5331-5335.
|
52 |
ZHOU J, BERMAN K H, BREEZE M L, et al.. Compositional variability in conventional and glyphosate-tolerant soybean (Glycine max L.) varieties grown in different regions in Brazil [J]. J. Agric. Food Chem., 2011, 59(21):11652-11656.
|
53 |
BERMAN K H, HARRIGAN G G, RIORDAN S G, et al.. Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max)[J]. J. Agric. Food Chem., 2010, 58(10):6270-6276.
|
54 |
HARRIGAN G G, RIDLEY W P, RIORDAN S G, et al.. Chemical composition of glyphosate-tolerant soybean 40-3-2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.)[J]. J. Agric. Food Chem., 2007, 55(15):6160-6168.
|
55 |
TAYLOR M L, BICKEL A, MANNION R, et al.. The dicamba-tolerant soybeans (Glycine max L.) MON 87708 and MON 87708 × MON 89788 are compositionally equivalent to conventional soybean[J]. J. Agric. Food Chem., 2017 65(36):8037-8045.
|
56 |
HAMMOND B G, VICINI J L, HARTNELL G F, et al.. The feeding value of soybeans fed to rats, chickens, catfish and dairy cattle is not altered by genetic incorporation of glyphosate tolerance[J]. Narnia,1996,126(3):717-727.
|
57 |
刘燕, 章嫡妮, 于赐刚, 等. 转CP4-EPSPS基因耐草甘膦除草剂大豆中作J9331喂养鹌鹑90d亚慢性毒理学研究[J].农业生物技术学报, 2017, 25(03):451-460.
|