1 |
KUMAR S, REYNOLDS K, JI Y, et al.. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk[J/OL]. J. Neurodev. Disord., 2019, 11(1): 10[2022-03-14]. .
|
2 |
TAYYAB M, SHAHI M H, FARHEEN S, et al.. Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression[J]. J. Neurosci. Res., 2018, 96(1): 53-62.
|
3 |
LI X L, WANG P, XIE Y, et al.. Protease nexin-1 protects against Alzheimer's disease by regulating the sonic hedgehog signaling pathway[J]. Int. J. Neurosci., 2021, 131(11): 1087-1096.
|
4 |
LAZAROV O, MATTSON M P, PETERSON D A, et al.. When neurogenesis encounters aging and disease[J]. Trends Neurosci., 2010, 33(12): 569-579.
|
5 |
KAN Z, WANG Y, CHEN Q, et al.. Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD Mice[J/OL]. Mol. Nutr. Food Res., 2021, 65(19): e2100626 [2021-09-12]. .
|
6 |
KLEIN M O, BATTAGELLO D S, CARDOSO A R, et al.. Dopamine: functions, signaling, and association with neurological diseases[J]. Cell Mol. Neurobiol., 2019, 39(1): 31-59.
|
7 |
LU B, NAGAPPAN G, GUAN X, et al.. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases[J]. Nat. Rev. Neurosci., 2013, 14(6): 401-416.
|
8 |
MATTSON M P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease[J]. Cell Metab., 2012, 16(6): 706-722.
|
9 |
OPENDAK M, GOULD E. Adult neurogenesis: a substrate for experience-dependent change[J]. Trends Cogn. Sci., 2015, 19(3): 151-161.
|
10 |
BRISCOE J, SMALL S. Morphogen rules: design principles of gradient-mediated embryo patterning[J]. Development, 2015, 142(23): 3996-4009.
|
11 |
MATISE M P, WANG H. Sonic hedgehog signaling in the developing CNS where it has been and where it is going[J]. Curr. Top Dev. Biol., 2011, 97: 75-117.
|
12 |
INGHAM P W, NAKANO Y, SEGER C. Mechanisms and functions of Hedgehog signalling across the metazoa[J]. Nat. Rev. Genet., 2011, 12(6): 393-406.
|
13 |
SKODA AM, SIMOVIC D, KARIN V, et al.. The role of the Hedgehog signaling pathway in cancer: A comprehensive review[J]. Bosn J. Basic Med. Sci., 2018, 18(1): 8-20.
|
14 |
GONNISSEN A, ISEBAERT S, HAUSTERMANS K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened[J]. Oncotarget, 2015, 6(16): 13899-13913.
|
15 |
ORO A E. The primary cilia, a 'Rab-id' transit system for hedgehog signaling[J]. Curr. Opin. Cell Biol., 2007, 19(6): 691-696.
|
16 |
ROHATGI R, MILENKOVIC L, SCOTT M P. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376.
|
17 |
JIA J, TONG C, WANG B, et al.. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I[J]. Nature, 2004, 432(7020): 1045-1050.
|
18 |
HAYCRAFT CJ, BANIZS B, AYDIN-SON Y, et al.. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function[J/OL]. PLoS Genet., 2005, 1(4): e53[2022-02-16]. .
|
19 |
ENDOH-YAMAGAMI S, EVANGELISTA M, WILSON D, et al.. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development[J]. Curr. Biol., 2009, 19(15): 1320-1326.
|
20 |
NOZAWA Y I, LIN C, CHUANG P T. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction[J]. Curr. Opin. Genet. Dev., 2013, 23(4): 429-437.
|
21 |
MÉTHOT N, BASLER K. Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus[J]. Development, 2000, 127(18): 4001-4010.
|
22 |
CHEN M H, WILSON C W, LI Y J, et al.. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved[J]. Genes Dev., 2009, 23(16): 1910-1928.
|
23 |
CHUANG P T, MCMAHON A P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein[J]. Nature, 1999, 397(6720): 617-621.
|
24 |
LI G, FANG L, FERNÁNDEZ G, et al.. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus[J]. Neuron, 2013, 78(4): 658-672.
|
25 |
KOMADA M, SAITSU H, KINBOSHI M, et al.. Hedgehog signaling is involved in development of the neocortex[J]. Development, 2008, 135(16): 2717-2727.
|
26 |
SHITASAKO S, ITO Y, ITO R, et al.. Wnt and Shh signals regulate neural stem cell proliferation and differentiation in the optic tectum of adult zebrafish[J]. Dev. Neurobiol., 2017, 77(10): 1206-1220.
|
27 |
MA Z, QIN M, LIANG H, et al.. Primary cilia-dependent signaling is involved in regulating mesenchymal stem cell proliferation and pluripotency maintenance[J]. J. Mol. Histol., 2020, 51(3): 241-250.
|
28 |
MAZZONETTO P C, ARIZA C B, OCANHA S G, et al.. Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation[J]. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6): 1502-1515.
|
29 |
VIVAR C, POTTER M C, CHOI J, et al.. Monosynaptic inputs to new neurons in the dentate gyrus[J/OL]. Nat. Commun., 2012, 3: 1107[2021-09-12]. .
|
30 |
MATTSON M P. Superior pattern processing is the essence of the evolved human brain[J/OL]. Front. Neurosci., 2014, 8: 265[2021-09-12]. .
|
31 |
MACHOLD R, HAYASHI S, RUTLIN M, et al.. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches[J]. Neuron, 2003, 39(6): 937-950.
|
32 |
LI X, LI Y, LI S, et al.. The role of Shh signalling pathway in central nervous system development and related diseases[J]. Cell Biochem. Funct., 2021, 39(2): 180-189.
|
33 |
FERENT J, CONSTABLE S, GIGANTE E D, et al.. The ciliary protein Arl13b functions outside of the primary cilium in Shh-mediated axon guidance[J]. Cell Rep., 2019, 29(11): 3356-3366.
|
34 |
YAO P J, PETRALIA R S, OTT C, et al.. Dendrosomatic sonic Hedgehog signaling in hippocampal neurons regulates axon elongation[J]. J. Neurosci., 2015, 35(49): 16126-16141.
|
35 |
PETRALIA R S, SCHWARTZ C M, WANG Y X, et al.. Subcellular localization of Patched and Smoothened, the receptors for Sonic hedgehog signaling, in the hippocampal neuron[J]. J. Comp. Neurol., 2011, 519(18): 3684-3699.
|
36 |
DELMOTTE Q, DIABIRA D, BELAIDOUNI Y, et al.. Sonic Hedgehog signaling agonist (SAG) triggers BDNF secretion and promotes the maturation of GABAergic networks in the postnatal rat hippocampus[J/OL]. Front. Cell Neurosci., 2020. 14: 98[2021-09-12]. .
|
37 |
PETRALIA R S, WANG Y X, MATTSON M P, et al.. Sonic hedgehog distribution within mature hippocampal neurons[J]. Commun. Integr. Biol., 2011, 4(6): 775-777.
|
38 |
HAMLETT E D, LEDREUX A, POTTER H, et al.. Exosomal biomarkers in Down syndrome and Alzheimer's disease[J]. Free Radic. Biol. Med., 2018, 114: 110-121.
|
39 |
ROPER R J, BAXTER L L, SARAN N G, et al.. Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(5): 1452-1456.
|
40 |
TRAZZI S, MITRUGNO V M, VALLI E, et al.. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome[J]. Hum. Mol. Genet., 2011, 20(8): 1560-1573.
|
41 |
GIACOMINI A, STAGNI F, TRAZZI S, et al.. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome[J]. Neurobiol. Dis., 2015, 82: 385-396.
|
42 |
DAS I, PARK J M, SHIN J H, et al.. Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model[J/OL]. Sci. Transl. Med., 2013, 5(201): 201ra120[2022-02-16]. .
|
43 |
GUTIERREZ-CASTELLANOS N, WINKELMAN B H J, TOLOSA-RODRIGUEZ L, et al.. Size does not always matter: Ts65Dn Down syndrome mice show cerebellum-dependent motor learning deficits that cannot be rescued by postnatal SAG treatment[J]. J. Neurosci., 2013, 33(39): 15408-15413.
|
44 |
DUTKA T, HALLBERG D, REEVES R H. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice[J]. Mech. Dev., 2015, 135: 68-80.
|
45 |
BLASSBERG R, MACRAE J I, BRISCOE J, et al.. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome[J]. Hum. Mol. Genet., 2016, 25(4): 693-705.
|
46 |
FILGES I, RÖTHLISBERGER B, BLATTNER A, et al.. Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism[J]. Clin. Genet., 2011, 79(1): 79-85.
|
47 |
CHÁVEZ M, ENA S, SANDE J, et al.. Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output[J]. Dev. Cell, 2015, 34(3): 338-350.
|
48 |
CAO W, ZHANG C, CHEN R, et al.. A Novel cerebroprotein hydrolysate, CH1, ameliorates chronic focal cerebral ischemia injury by promoting white matter integrity via the Shh/Ptch-1/Gli-1 signaling pathway[J]. Neuropsychiatr. Dis. Treat., 2020, 16: 3209-3224.
|
49 |
NGUYEN V, CHAVALI M, LARPTHAVEESARP A, et al.. Neuroprotective effects of Sonic hedgehog agonist SAG in a rat model of neonatal stroke[J]. Pediatr. Res., 2021, 90(6): 1161-1170.
|
50 |
DING X, LI Y, LIU Z, et al.. The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice[J]. J. Cereb. Blood Flow Metab., 2013, 33(7): 1015-1024.
|
51 |
YU P, WANG L, TANG F, et al.. Resveratrol-mediated neurorestoration after cerebral ischemic injury - Sonic Hedgehog signaling pathway[J/OL]. Life Sci., 2021, 280: 119715[2022-02-16]. .
|
52 |
SPACCAPELO L, GALANTUCCI M, NERI L, et al.. Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia[J]. Eur. J. Pharmacol., 2013, 707(1-3): 78-86.
|
53 |
PITTER KL, TAMAGNO I, FENG X, et al.. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions[J]. Glia, 2014, 62(10): 1595-1607.
|
54 |
BAO G Q, YU Y. Vitamin D3 promotes cerebral angiogenesis after cerebral infarction in rats by activating Shh signaling pathway[J]. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20): 7069-7077.
|
55 |
H E P, STAUFENBIEL M, LI R, et al.. Deficiency of patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice[J]. Hum. Mol. Genet., 2014, 23(24): 6512-6527.
|
56 |
CHEIGNON C, TOMAS M, BONNEFONT-ROUSSELOT D, et al.. Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J]. Redox Biol., 2018, 14: 450-464.
|
57 |
MUÑOZ S S, ENGEL M, BALEZ R, et al.. A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal forebrain-like cholinergic neurons for Alzheimer' s disease and frontotemporal dementia disease modeling[J/OL]. Cells, 2020, 9(9): 9092018[2021-09-12]
|
58 |
AMIDFAR M, OLIVEIRA DE J, KUCHARSKA E, et al.. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease[J/OL]. Life Sci., 2020, 257: 118020[2021-09-12]. .
|
59 |
FANG E F, HOU Y, PALIKARAS K, et al.. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci., 2019, 22(3): 401-412.
|
60 |
HECKMANN B L, TEUBNER B J W, TUMMERS B, et al.. LC3-associated endocytosis facilitates β-Amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease[J]. Cell, 2019, 178(3): 536-551.
|
61 |
STATHAKOS P, JIMÉNEZ-MORENO N, CROMPTON L A, et al.. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons[J]. Autophagy, 2021, 17(4): 855-871.
|
62 |
COLUCCI-D'AMATO L, SPERANZA L, VOLPICELLI F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer[J/OL]. Int. J. Mol. Sci., 2020, 21(20): 7777[2021-09-12]. .
|
63 |
FATIMA M, AHMAD M H, SRIVASTAV S, et al.. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats[J/OL]. Neurochem. Int., 2020, 136: 104730[2021-09-12]. .
|
64 |
VOSS M W, VIVAR C, KRAMER A F, et al.. Bridging animal and human models of exercise-induced brain plasticity[J]. Trends Cogn. Sci., 2013, 17(10): 525-544.
|