生物技术进展 ›› 2020, Vol. 10 ›› Issue (3): 265-272.DOI: 10.19586/j.2095-2341.2020.0025

• 研究论文 • 上一篇    下一篇

胶质母细胞瘤预后相关基因的数据挖掘分析

马胜男,张晓康,仪杨,张昭,姚婷婷,赵清辉,谢飞*   

  1. 北京工业大学生命科学与生物医学工程学院, 北京 100124
  • 收稿日期:2020-03-04 出版日期:2020-05-25 发布日期:2020-04-16
  • 通讯作者: 谢飞 E-mail:xiefei990815@bjut.edu.cn
  • 作者简介:马胜男 E-mail:278466496@emails.bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(31500828);军民融合项目(BHJ17L018);北京市教委科技创新服务能力建设项目(01500054639511)。

Data Mining Analysis of Prognosis Related Genes of Glioblastoma

MA Shengnan, ZHANG Xiaokang, YI Yang, ZHANG Zhao, YAO Tingting, ZHAO Qinghui, XIE Fei #br#   

  1. College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
  • Received:2020-03-04 Online:2020-05-25 Published:2020-04-16

摘要: 胶质母细胞瘤(glioblastoma, GBM)是恶性程度最高的颅内恶性肿瘤,目前临床上缺乏有效治疗药物,复发率高且预后差,开发新的抗GBM药物是目前临床上亟待解决的问题。为了筛选与GBM预后密切相关的基因,为寻找新的药物靶点提供线索,采用GEO2R工具从GEO数据库中的269个肿瘤组织和61个正常组织中初步筛选出差异表达基因,然后利用Cluster Profiler数据库进行基因功能富集分析,STRING及Cytoscape进一步筛选出37个差异表达基因,采用GEPIA交互分析对这37个基因在GBM肿瘤组织中的表达进行验证。为了进一步探索这些差异表达基因与患者预后的关系,研究中利用GEPIA工具对TCGA数据库中与患者预后相关的数据进行深入挖掘,最终发现PTTG1、RRM2、E2F7与患者中位生存期呈显著性负相关。研究筛选出的与患者预后密切相关的基因不仅可以为评估患者预后提供参考,同时也为开发新的抗GBM药物提供了潜在的靶点。

关键词: 胶质母细胞瘤, 数据挖掘, 差异表达基因, 预后相关基因

Abstract: Glioblastoma (GBM) is the most aggressive human brain tumor. Since currently available drugs are of limited efficacy, the recurrence rate is high and the prognosis is poor for GBM. There is an urgent need to develop a new anti-GBM drugs in clinical practice. The purpose of this study was to screen genes that are closely related to the prognosis of GBM and to provide clues for finding new drug targets. In the study, the GEO2R tool was used to initially screen differentially expressed genes from 269 tumor tissues and 61 normal tissues in the GEO database. Cluster Profiler databases was then used to perform the gene function enrichment analysis, STRING and Cytoscape further resulted a total of 37 differentially expressed genes. The expression of these genes were then verified by GEPIA interaction analysis in GBM tumor tissues. To further explore the relationship between these differentially expressed genes and the prognosis of patients with GBM, GEPIA was used to deeply mine the patient prognosis-related data in the TCGA database. Finally, three genes, named PTTG1, RRM2, and E2F7, were found to be significantly negatively correlated with the patient's median survival. Conclusively, the screened genes highly related to patient prognosis not only offer a reference for assessing patient prognosis, but also provide potential targets for the development of new anti-GBM drugs.

Key words: glioblastoma, data mining, differentially expressed genes, prognosis-related genes