生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 388-395.DOI: 10.19586/j.2095-2341.2025.0008
收稿日期:
2025-01-21
接受日期:
2025-04-30
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
王辉
作者简介:
杨明明 E-mail: 743419974@qq.com;
基金资助:
Received:
2025-01-21
Accepted:
2025-04-30
Online:
2025-05-25
Published:
2025-07-01
Contact:
Hui WANG
摘要:
抗体偶联药物(antibody-drug conjugate, ADC)临床应用的成功推动了放射性核素偶联药物(radionuclide drug conjugates, RDC)、多肽偶联药物(peptide drug conjugates, PDC)及小分子药物偶联物(small molecule-drug conjugates, SMDC)等新型偶联药物的快速发展。这些药物通过整合靶向递送与高效载荷释放,在癌症治疗领域展现出显著优势,并逐步向疾病诊断与其他治疗领域拓展。系统综述了偶联药物、偶联技术的研究进展与临床转化现状,探讨了其在适应症扩展、技术迭代及诊疗一体化中的未来研究方向。
中图分类号:
杨明明, 王辉. 偶联药物研究进展[J]. 生物技术进展, 2025, 15(3): 388-395.
Mingming YANG, Hui WANG. Research Progress on Coupled Drugs[J]. Current Biotechnology, 2025, 15(3): 388-395.
分类 | 核素类型 | 代表核素 | 检测/作用机制 |
---|---|---|---|
诊断型RDC | 正电子(β⁺)发射体 | ⁶⁸Ga、¹⁸F、⁶⁴Cu③、⁸⁹Zr | PET显像(γ光子检测) |
单光子发射体 | ⁹⁹mTc、¹¹¹In | SPECT显像 | |
治疗型RDC | 高LET α粒子①发射体 | ²²⁵Ac、²²³Ra、²¹³Bi、²¹¹At | 引发DNA双链断裂,杀伤乏氧细胞 |
长射程 β⁻粒子②发射体 | ¹⁷⁷Lu③、⁹⁰Y、¹³¹I、¹⁸⁸Re | 交叉火力效应覆盖异质性肿瘤 |
表1 RDC的主要临床应用分类[16-17]
Table1 Main clinical application classification of RDC[16-17]
分类 | 核素类型 | 代表核素 | 检测/作用机制 |
---|---|---|---|
诊断型RDC | 正电子(β⁺)发射体 | ⁶⁸Ga、¹⁸F、⁶⁴Cu③、⁸⁹Zr | PET显像(γ光子检测) |
单光子发射体 | ⁹⁹mTc、¹¹¹In | SPECT显像 | |
治疗型RDC | 高LET α粒子①发射体 | ²²⁵Ac、²²³Ra、²¹³Bi、²¹¹At | 引发DNA双链断裂,杀伤乏氧细胞 |
长射程 β⁻粒子②发射体 | ¹⁷⁷Lu③、⁹⁰Y、¹³¹I、¹⁸⁸Re | 交叉火力效应覆盖异质性肿瘤 |
药物类型 | 已上市数量(全球) | 技术特点 | 适应症分布 | 中国进展 | 代表药物 |
---|---|---|---|---|---|
ADC药物 | 16款 | 靶点多样化(HER2、TROP2、CD79b等)、抗体亚型选择(IgG1/IgG4)、载荷选择(微管蛋白抑制剂/DNA损伤剂)、连接子技术迭代(可裂解/不可裂解) | 血液肿瘤(淋巴瘤、白血病等)实体瘤(乳腺癌、前列腺癌等)管线80%集中于实体瘤 | 10款获批上市(如维迪西妥单抗、德曲妥珠单抗等)多款处于临床Ⅲ期(如Tisotumab vedotin) | 德曲妥珠单抗(Enhertu®)、戈沙妥珠单抗(Trodelvy®)、维泊妥珠单抗(Polivy®)等 |
RDC药物 | 18款 | 核素诊疗一体化(如64Cu、177Lu)、连接子工程优化(DOTA-GSC体系)、载体多样化(抗体、多肽、小分子) | 肿瘤诊断与治疗(前列腺癌、神经内分泌肿瘤等)拓展至神经退行性疾病(阿尔茨海默病) | 131I-美妥昔单抗(利卡汀®)获批肝癌治疗,177Lu-PSMA-617(Pluvicto®)申请上市 | 68Ga-PSMA-11(LOCAMETZ®)、177Lu-DOTATATE(Lutathera®)、90Y-替伊莫单抗(Zevalin®)等 |
PDC药物 | 2款 | 分子量小(<5 kD)、实体瘤渗透性强、模块化多肽设计、双响应连接子技术 | 胃肠胰神经内分泌肿瘤、乳腺癌、脑转移等难治性肿瘤 | Lutathera®(镥-177)批准临床,Pepaxto®撤市后无新药上市 | Lutathera®(177Lu-DOTATATE)、Pepaxto®(已撤市) |
SMDC药物 | 0款 | 组织穿透性佳、靶向难成药靶点(KRAS G12D、AKR1C3等)、载荷多元化(PROTAC等) | 实体瘤(胰腺癌、肝细胞癌等) | 多款处于Ⅰ/Ⅱ期(如AST-001、CBP-1019) | QHL-108(靶向TOP2)、AST-001(靶向KRAS G12D)等 |
表2 偶联药物临床进展情况
Table 2 Clinical progress of coupled drugs
药物类型 | 已上市数量(全球) | 技术特点 | 适应症分布 | 中国进展 | 代表药物 |
---|---|---|---|---|---|
ADC药物 | 16款 | 靶点多样化(HER2、TROP2、CD79b等)、抗体亚型选择(IgG1/IgG4)、载荷选择(微管蛋白抑制剂/DNA损伤剂)、连接子技术迭代(可裂解/不可裂解) | 血液肿瘤(淋巴瘤、白血病等)实体瘤(乳腺癌、前列腺癌等)管线80%集中于实体瘤 | 10款获批上市(如维迪西妥单抗、德曲妥珠单抗等)多款处于临床Ⅲ期(如Tisotumab vedotin) | 德曲妥珠单抗(Enhertu®)、戈沙妥珠单抗(Trodelvy®)、维泊妥珠单抗(Polivy®)等 |
RDC药物 | 18款 | 核素诊疗一体化(如64Cu、177Lu)、连接子工程优化(DOTA-GSC体系)、载体多样化(抗体、多肽、小分子) | 肿瘤诊断与治疗(前列腺癌、神经内分泌肿瘤等)拓展至神经退行性疾病(阿尔茨海默病) | 131I-美妥昔单抗(利卡汀®)获批肝癌治疗,177Lu-PSMA-617(Pluvicto®)申请上市 | 68Ga-PSMA-11(LOCAMETZ®)、177Lu-DOTATATE(Lutathera®)、90Y-替伊莫单抗(Zevalin®)等 |
PDC药物 | 2款 | 分子量小(<5 kD)、实体瘤渗透性强、模块化多肽设计、双响应连接子技术 | 胃肠胰神经内分泌肿瘤、乳腺癌、脑转移等难治性肿瘤 | Lutathera®(镥-177)批准临床,Pepaxto®撤市后无新药上市 | Lutathera®(177Lu-DOTATATE)、Pepaxto®(已撤市) |
SMDC药物 | 0款 | 组织穿透性佳、靶向难成药靶点(KRAS G12D、AKR1C3等)、载荷多元化(PROTAC等) | 实体瘤(胰腺癌、肝细胞癌等) | 多款处于Ⅰ/Ⅱ期(如AST-001、CBP-1019) | QHL-108(靶向TOP2)、AST-001(靶向KRAS G12D)等 |
1 | ALAS M, SAGHAEIDEHKORDI A, KAUR K. Peptide-drug conjugates with different linkers for cancer therapy[J]. J. Med. Chem., 2021, 64(1): 216-232. |
2 | CASEY LAIZURE S, HERRING V, HU Z, et al.. The role of human carboxylesterases in drug metabolism: have we overlooked their importance?[J]. Pharmacotherapy, 2013, 33(2): 210-222. |
3 | LIANG Y, LI S, WANG X, et al.. A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers[J]. J. Control. Release, 2018, 275: 129-141. |
4 | MAI C W, CHUNG F F, OLEONG C. Targeting legumain as a novel therapeutic strategy in cancers[J]. Curr. Drug Targets, 2017, 18(11): 1259-1268. |
5 | BARGH J D, ISIDRO-LLOBET A, PARKER J S, et al.. Cleavable linkers in antibody-drug conjugates[J]. Chem. Soc. Rev., 2019, 48(16): 4361-4374. |
6 | BANSALA, SIMONM C. Glutathione metabolism in cancer progression and treatment resistance[J]. J. Cell Biol., 2018, 217(7): 2291-2298. |
7 | LELLE M, FREIDEL C, KALOYANOVA S, et al.. Overcoming drug resistance by cell-penetrating peptide-mediated delivery of a doxorubicin dimer with high DNA-binding affinity[J]. Eur. J. Med. Chem., 2017, 130: 336-345. |
8 | 张徽,刘晨,郝朝威,等.多肽药物偶联物的结构组成及其抗肿瘤作用的研究进展[J].药学进展, 2024, 48(5):390-400. |
ZHANG W, LIU C, HAO C W, et al.. Research progress on the structural composition and antitumor activity of peptide-drug conjugates[J]. Prog. Pharm. Sci., 2024, 48(5): 390-400. | |
9 | WEIDMANN A G, KOMOR A C, BARTON J K. Targeted chemotherapy with metal complexes[J]. Comments Mod. Chem.A Comments Inorg. Chem., 2014, 34(3-4): 114-123. |
10 | TAN S L, O'MAHONY A, BERG E L, et al.. Primary human cell bioMAP® profiling of methotrexate, tocilizumab, adalimumab, and tofacitinib reveals different mechanisms of action with distinct phenotypic signatures[C]// American: American College of Rheumatology/association of Rheumatology Health Professionals Meeting,2013. |
11 | RÉGINA A, DEMEULE M, CHÉ C, et al.. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2[J]. Br. J. Pharmacol., 2008, 155(2): 185-197. |
12 | FU Z, LI S, HAN S, et al.. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J/OL]. Signal Transduct. Target. Ther., 2022, 7: 93[2025-01-25]. . |
13 | DUMONTET C, REICHERT J M, SENTER P D, et al.. Antibody-drug conjugates come of age in oncology[J]. Nat. Rev. Drug Discov., 2023, 22(8): 641-661. |
14 | 刘丹,李修齐,刘书鹏,等.放射性核素偶联药物:中国15年研发进程及最新政策支持[J/OL].协和医学杂志,2024:1-9[2024-09-30]. . |
LIU D, LI X Q, LIU S P, et al.. Radionuclide drug conjugates: China's 15-year research and development process and latest policy support[J/OL]. Med. J. Peking Union Med. Coll. Hosp., 2024: 1-9[2024-09-30]. . | |
15 | SGOUROS G, BODEI L, MCDEVITT M R, et al.. Radiopharmaceutical therapy in cancer: clinical advances and challenges[J]. Nat. Rev. Drug Discov., 2020, 19(9): 589-608. |
16 | 王雪,李倩,韦薇.浅析抗体偶联核素类产品药学研发和评价关注点[J].中国新药杂志,2023,32(2):143-147. |
WANG X, LI Q, WEI W. The concerns of CMC research and evaluation of antibody radionuclide conjugates products[J]. Chin. J. New Drugs, 2023, 32(2): 143-147. | |
17 | ARTIGAS C, MILEVA M, FLAMEN P, et al.. Targeted radionuclide therapy: an emerging field in solid tumours[J]. Curr. Opin. Oncol., 2021, 33(5): 493-499. |
18 | GONG L, ZHAO H, LIU Y, et al.. Research advances in peptide‒drug conjugates[J]. Acta Pharm. Sin. B, 2023, 13(9): 3659-3677. |
19 | WANG M, LIU J, XIA M, et al.. Peptide-drug conjugates: a new paradigm for targeted cancer therapy[J/OL]. Eur. J. Med. Chem., 2024, 265: 116119[2025-01-25]. . |
20 | SANKAR S, O'NEILL K, BAGOT D'ARC M, et al.. Clinical use of the self-assembling peptide RADA16: a review of current and future trends in biomedicine[J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 679525[2025-01-25]. . |
21 | MAKVANDI P, JAMALEDIN R, CHEN G, et al.. Stimuli-responsive transdermal microneedle patches[J]. Mater. Today (Kidlington), 2021, 47: 206-222. |
22 | MU R, ZHU D, ABDULMALIK S, et al.. Stimuli-responsive peptide assemblies: design, self-assembly, modulation, and biomedical applications[J]. Bioact. Mater., 2024, 35: 181-207. |
23 | DENG X, MAI R, ZHANG C, et al.. Discovery of novel cell-penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment[J/OL]. Eur. J. Med. Chem., 2021, 213:113050[2025-01-13]. . |
24 | SRINIVASARAO M, LOW P S. Ligand-targeted drug delivery[J]. Chem. Rev., 2017, 117(19): 12133-12164. |
25 | LOWP S, HENNEW A, DOORNEWEERDD D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases[J]. Acc. Chem. Res., 2008,41(1): 120-129. |
26 | HILLIER S M, MARESCA K P, FEMIA F J, et al.. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer[J]. Cancer Res., 2009, 69(17): 6932-6940. |
27 | GINJ M, ZHANG H, WASER B, et al.. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(44): 16436-16441. |
28 | CASI G, NERI D. Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents[J]. J. Med. Chem., 2015, 58(22): 8751-8761. |
29 | SRINIVASARAO M, GALLIFORD C V, LOW P S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents[J]. Nat. Rev. Drug Discov., 2015, 14(3): 203-219. |
30 | KRALL N, PRETTO F, DECURTINS W, et al.. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors[J]. Angew. Chem. Int. Ed., 2014, 53(16): 4231-4235. |
31 | KRALL N, PRETTO F, NERI D. A bivalent small molecule-drug conjugate directed against carbonic anhydrase IX can elicit complete tumour regression in mice[J/OL]. Chem. Sci., 2014, 5(9): 3640[2025-01-25]. . |
32 | CAZZAMALLI S, CORSO A, NERI D. Acetazolamide serves as selective delivery vehicle for dipeptide-linked drugs to renal cell carcinoma[J]. Mol. Cancer Ther., 2016, 15(12): 2926-2935. |
33 | TAMURA S, INOMATA S, EBINE M, et al.. Triazoyl–phenyl linker system enhancing the aqueous solubility of a molecular probe and its efficiency in affinity labeling of a target protein for jasmonate glucoside[J]. Bioorg. Med. Chem. Lett., 2013, 23(1): 188-193. |
34 | LEAMON C P, REDDY J A, KLEIN P J, et al.. Reducing undesirable hepatic clearance of a tumor-targeted Vinca alkaloid via novel saccharopeptidic modifications[J]. J. Pharmacol. Exp. Ther., 2011, 336(2): 336-343. |
35 | DU C, TIAN J, WAN S, et al.. Synthesis and evaluation of a folate-linked anti-cancer prodrug[C]// 2012 International Conference on Biomedical Engineering and Biotechnology. Piscataway, New Jersey: IEEE, 2012: 1089-1092. |
36 | FU C, TONG W, YU L, et al.. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside?[J/OL]. Pharmacol. Res., 2024, 203: 107160[2025-01-25]. . |
37 | SCHIRMER M, GARNER A, VLAMAKIS H, et al.. Microbial genes and pathways in inflammatory bowel disease[J]. Nat. Rev. Microbiol., 2019, 17(8):497-511. |
38 | QIAN L, LIN X, GAO X, et al.. The dawn of a new era: targeting the "undruggables" with antibody-based therapeutics[J]. Chem. Rev., 2023, 123(12): 7782-7853. |
39 | JIAO J, QIAN Y, LYU Y, et al.. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotideconjugates (AOCs): current status and future perspectives [J/OL]. Pharmacol. Res., 2024, 209:107469[2025-01-13]. . |
40 | MULLARD A. Antibody-oligonucleotide conjugates enter the clinic[J]. Nat. Rev. Drug Discov., 2022, 21(1): 6-8. |
41 | MA X, JIANG J, AN X, et al.. Advances in research based on antibody-cell conjugation[J/OL]. Front. Immunol., 2023, 14: 1310130[2025-01-25]. . |
42 | LI M Y, WANG L, MA N N. Application of site-specific conjugation techniques in antibody-drug conjugates[J]. Prog. Pharm. Sci., 2021, 45(3): 180-187. |
43 | MORAIS M, FORTE N, CHUDASAMA V, et al.. Application of next-generation maleimides (NGMs) to site-selective antibody conjugation[J]. Methods Mol. Biol., 2019, 2033: 15-24. |
44 | SCHUMACHER F F, NUNES J P M, MARUANI A, et al.. Next generation maleimides enable the controlled assembly of antibody-drug conjugates via native disulfide bond bridging[J]. Org. Biomol. Chem., 2014, 12(37): 7261-7269. |
45 | JUNUTULA J R, RAAB H, CLARK S, et al.. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index[J]. Nat. Biotechnol., 2008, 26(8): 925-932. |
46 | DIMASI N, FLEMING R, ZHONG H, et al.. Efficient preparation of site-specific antibody-drug conjugates using cysteine insertion[J]. Mol. Pharm., 2017, 14(5): 1501-1516. |
47 | SHIRAISHI Y, MURAMOTO T, NAGATOMO K, et al.. Identification of highly reactive cysteine residues at less exposed positions in the Fab constant region for site-specific conjugation[J]. Bioconjug. Chem., 2015, 26(6): 1032-1040. |
48 | SHINMI D, TAGUCHI E, IWANO J, et al.. One-step conjugation method for site-specific antibody-drug conjugates through reactive cysteine-engineered antibodies[J]. Bioconjug. Chem., 2016, 27(5): 1324-1331. |
49 | HALLAM T J, WOLD E, WAHL A, et al.. Antibody conjugates with unnatural amino acids[J]. Mol. Pharm., 2015, 12(6): 1848-1862. |
50 | KRÜGER T, DIERKS T, SEWALD N. Formylglycine-generating enzymes for site-specific bioconjugation[J]. Biol. Chem., 2019, 400(3): 289-297. |
51 | SCHNEIDER H, DEWEID L, AVRUTINA O, et al.. Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates[J/OL]. Anal. Biochem., 2020, 595: 113615[2025-01-25]. . |
52 | BEERLI R R, HELL T, MERKEL A S, et al.. Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency[J/OL]. PLoS ONE, 2015, 10(7): e0131177[2025-01-25]. . |
53 | VAN BERKEL S S, VAN DELFT F L. Enzymatic strategies for (near) clinical development of antibody-drug conjugates[J]. Drug Discov. Today Technol., 2018, 30: 3-10. |
54 | POLMEAR J, GOOD-JACOBSON K L. Antibody glycosylation directs innate and adaptive immune collaboration[J]. Curr. Opin. Immunol., 2022, 74: 125-132. |
55 | VACCARO C, ZHOU J, OBER R J, et al.. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels[J]. Nat. Biotechnol., 2005, 23(10): 1283-1288. |
56 | VAN GEEL R, WIJDEVEN M A, HEESBEEN R, et al.. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody-drug conjugates[J]. Bioconjug. Chem., 2015, 26(11): 2233-2242. |
57 | ZUBERBÜHLER K, CASI G, BERNARDES G J L, et al.. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format[J]. Chem. Commun. (Camb), 2012, 48(56): 7100-7102. |
58 | OKELEY N M, TOKI B E, ZHANG X, et al.. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation[J]. Bioconjug. Chem., 2013, 24(10): 1650-1655. |
59 | MA D, JIN F, BARLETTA F, et al.. Abstract 644: Impact of conjugation site on pharmacokinetics and off-target toxicity of site-specific antibody drug conjugates[J/OL]. Cancer Res., 2015, 75(15): 644[2025-01-25]. . |
60 | SHEN L, WU Y, XIE W, et al.. Chemical biology approaches toward precise structure control of IgG-based antibody-oligonucleotide conjugates[J/OL]. Chembiochem, 2023, 24(9): e202300077[2025-01-25]. . |
61 | DUGAL-TESSIER J, THIRUMALAIRAJAN S, JAIN N. Antibody-oligonucleotide conjugates: a twist to antibody-drug conjugates[J/OL]. J. Clin. Med., 2021, 10(4): 838[2025-01-25]. . |
62 | CHANG L, LI J, WANG L. Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection[J]. Anal. Chim. Acta, 2016, 910: 12-24. |
63 | BAAH S, LAWS M, RAHMAN K M. Antibody-drug conjugates-a tutorial review[J/OL]. Molecules, 2021, 26(10): 2943[2025-01-25]. . |
64 | JIANG M, LI Q, XU B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: strategies for competitive advancement[J/OL]. Drug Resist. Updat., 2024, 75: 101086[2025-01-25]. . |
65 | CHANDRA R A, DOUGLAS E S, MATHIES R A, et al.. Programmable cell adhesion encoded by DNA hybridization[J]. Angew. Chem. Int. Ed., 2006, 45(6): 896-901. |
66 | SAXON E, BERTOZZI C R. Cell surface engineering by a modified Staudinger reaction[J]. Science, 2000, 287(5460): 2007-2010. |
67 | GOLDSMITH S J. Targeted radionuclide therapy: a historical and personal review[J]. Semin. Nucl. Med., 2020, 50(1): 87-97. |
68 | RONDON A, ROUANET J, DEGOUL F. Radioimmunotherapy in oncology: overview of the last decade clinical trials [J/OL]. Cancers (Basel), 2021, 13(21):5570[2025-01-13]. . |
69 | FU H, HUANG J, ZHAO T, et al.. Fibroblast activation protein-targeted radioligand therapy with 177Lu-EB-FAPI for metastatic radioiodine-refractory thyroid cancer: first-in-human, dose-escalation study[J]. Clin. Cancer Res., 2023, 29(23): 4740-4750. |
70 | SHAH H, RAVI P, SONPAVDE G, et al.. Lutetium Lu177 vipivotide tetraxetan for metastatic castration-resistant prostate cancer[J]. Expert Rev. Anticancer Ther., 2022, 22(11): 1163-1175. |
[1] | 杨懿祺, 张志高, 游小龙, 张婧, 林冠峰, 吴英松. 抗体药物的发展与应用[J]. 生物技术进展, 2022, 12(3): 358-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部