1 |
张清翠, 石雅丽, 刘安礼, 等. 外切纤维素酶的研究与应用进展[J]. 生物技术进展, 2020, 10(5): 495-502.
|
|
ZHANG Q C, SHI Y L, LIU A L, et al.. Research and application progress of exocellulase[J]. Curr. Biotechnol., 2020, 10(5): 495-502.
|
2 |
孔蒙蒙, 金静静, 卢鹏, 等. 高产纤维素酶工程菌株产酶条件优化[J]. 生物技术进展, 2024, 14(6): 1032-1041.
|
|
KONG M M, JIN J J, LU P, et al.. Optimization of cellulase production conditions of high-yield cellulase engineering strains[J]. Curr. Biotechnol., 2024, 14(6): 1032-1041.
|
3 |
VERAWAT C, WUTTICHAI M, HATAIKARN L, et al.. Designing cellulolytic enzyme systems for biorefinery: from nature to application[J]. J. Biosci. Bioeng., 2019, 128(6): 637-654.
|
4 |
LESSARD P A, LI X, BROOMHEAD J N, et al.. Properties of corn-expressed carbohydrase AC1 in swine diets and its effects on apparent ileal digestibility, performance, hematology, and serum chemistry[J/OL]. Heliyon, 2021, 7(8): e07696[2025-02-15]. .
|
5 |
CHEN Y, SHEN D, ZHANG L, et al.. Supplementation of non-starch polysaccharide enzymes cocktail in a corn-miscellaneous meal diet improves nutrient digestibility and reduces carbon dioxide emissions in finishing pigs[J/OL]. Animals, 2020, 10(2): E232[2025-02-15]. .
|
6 |
DU Z, YAMASAKI S, OYA T, et al.. Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant[J/OL]. Biotechnol. Biofuels Bioprod., 2023, 16(1): 125[2025-02-15]. .
|
7 |
CHEN C, XIN Y, LI X, et al.. Effects of Acremonium cellulase and heat-resistant lactic acid bacteria on lignocellulose degradation, fermentation quality, and microbial community structure of hybrid elephant grass silage in humid and hot areas[J/OL]. Front. Microbiol., 2022, 13: 1066753[2025-02-15]. .
|
8 |
SHINKAI T, MITSUMORI M, SOFYAN A, et al.. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen[J]. Anim. Sci. J., 2016, 87(11): 1363-1370.
|
9 |
杨俊钊, 张新蕊, 赵国柱, 等. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4):71-80.
|
|
YANG J Z, ZHANG X R, ZHAO G Z, et al.. Structure and function analysis of novel GH5 multi-domain cellulase[J]. Biotechnol. Bull., 2023, 39(4): 71-80.
|
10 |
HERNÁNDEZ-BENÍTEZ L J, RAMÍREZ-RODRÍGUEZ M A, HERNÁNDEZ-SANTOYO A, et al.. A trimeric glycosylated GH45 cellulase from the red abalone (Haliotis rufescens) exhibits endo and exoactivity[J/OL]. PLoS ONE, 2024, 19(4): e0301604[2025-02-15]. .
|
11 |
杨虹. GH45和GH12家族纤维素酶的稳定性和催化特性研究[D]. 北京: 中国农业科学院, 2019.
|
12 |
NEVES A L A, YU J, SUZUKI Y, et al.. Accelerated discovery of novel glycoside hydrolases using targeted functional profiling and selective pressure on the rumen microbiome[J/OL]. Microbiome, 2021, 9(1): 229[2025-02-15]. .
|
13 |
MUELBAIER H, ARTHEN F, COLLINS G, et al.. Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates[J/OL]. Mol. Ecol., 2024, 33(20): e17351[2025-02-15]. .
|
14 |
BAUTISTA-CRUZ A, AQUINO-BOLAÑOS T, HERNÁNDEZ-CANSECO J, et al.. Cellulolytic aerobic bacteria isolated from agricultural and forest soils: an overview[J/OL]. Biology, 2024, 13(2): 102[2025-02-15]. .
|
15 |
KOGA J, BABA Y, SHIMONAKA A, et al.. Purification and characterization of a new family 45 endoglucanase, STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens [J]. Appl. Environ. Microbiol., 2008, 74(13): 4210-4217.
|
16 |
AMENGUAL N G, CSARMAN F, WOHLSCHLAGER L, et al.. Expression and characterization of a family 45 glycosyl hydrolase from Fomitopsis pinicola and comparison to Phanerochaete chrysosporium Cel45A[J/OL]. Enzyme Microb. Technol., 2022, 156: 110000[2025-02-15]. .
|
17 |
OKMANE L, NESTOR G, JAKOBSSON E, et al.. Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: crystal structure and activity comparison with GH45 subfamilyA, B and C[J/OL]. Carbohydr. Polym., 2022, 277: 118771[2025-02-15]. .
|
18 |
郭超. GH45家族纤维素酶基因的挖掘及高效表达[D]. 天津: 天津科技大学, 2016.
|
19 |
HIGASI P M R, VELASCO J A, PELLEGRINI V O A, et al.. Light-stimulated T. thermophilus two-domain LPMO9H: low-resolution SAXS model and synergy with cellulases[J/OL]. Carbohydr. Polym., 2021, 260: 117814[2025-02-15]. .
|
20 |
ZAYULINA K S, KOCHETKOVA T V, PIUNOVA U E, et al.. Novel hyperthermophilic crenarchaeon Thermofilum adornatum sp. nov. uses GH1, GH3, and two novel glycosidases for cellulose hydrolysis[J/OL]. Front. Microbiol., 2019, 10: 2972[2025-02-15]. .
|
21 |
CHAHED H, BOUMAIZA M, EZZINE A, et al.. Heterologous expression and biochemical characterization of a novel thermostable Sclerotinia sclerotiorum GH45 endoglucanase in Pichia pastoris [J]. Int. J. Biol. Macromol., 2018, 106: 629-635.
|
22 |
ZHOU Q, JI P, ZHANG J, et al.. Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin[J]. J. Biosci. Bioeng., 2017, 124(3): 271-276.
|
23 |
CHA J H, YOON J J, CHA C J. Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris [J]. Appl. Microbiol. Biotechnol., 2018, 102(15): 6515-6523.
|
24 |
BISCHOF R H, RAMONI J, SEIBOTH B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei [J/OL]. Microb. Cell Fact., 2016, 15(1): 106[2025-02-15]. .
|
25 |
PENG R, LIN G, LI J. Potential pitfalls of CRISPR/Cas9-mediated genome editing[J]. FEBS J., 2016, 283(7): 1218-1231.
|
26 |
WU S, XU G, SU Y, et al.. Mining and rational design of psychrophilic catalases using metagenomics and deep learning models[J/OL]. Appl. Microbiol. Biotechnol., 2024, 108(1): 31[2025-02-15]. .
|
27 |
许国顺. 基于土壤宏基因组测序的低温过氧化氢酶基因的挖掘与设计[D]. 北京: 中国农业科学院, 2021.
|
28 |
乔烨, 张楠, 杨建花, 等. 糖磷酸酶的挖掘及其酶学性质研究[J]. 生物技术通报, 2024, 40(7): 299-306.
|
|
QIAO Y, ZHANG N, YANG J H, et al.. Identification and enzymatic characterization of a sugar phosphatase[J]. Biotechnol. Bull., 2024, 40(7): 299-306.
|
29 |
LIANG Q, YUAN M, XU L, et al.. Application of enzymes as a feed additive in aquaculture[J]. Mar. Life Sci. Technol., 2022, 4(2): 208-221.
|
30 |
JIANG B, WANG T, ZHOU Y, et al.. Effects of enzyme + bacteria treatment on growth performance, rumen bacterial diversity, KEGG pathways, and the CAZy spectrum of Tan sheep[J]. Bioengineered, 2020, 11(1): 1221-1232.
|
31 |
MOHAMED T E, MAHMOUD A, AMLAN K P, et al.. The functionality of probiotics in aquaculture: an overview[J]. Fish Shellfish. Immunol., 2021, 117: 36-52.
|
32 |
郭超, 赵军旗, 齐西珍, 等. 粗糙脉孢菌GH45家族内切纤维素酶基因ncGH45在毕赤酵母中表达及重组酶的性质表征[J]. 中国农业科技导报, 2016, 18(4): 64-72.
|
|
GUO C, ZHAO J Q, QI X Z, et al.. Heterologous expression and characterization of a GH45 endocellulase gene ncGH45 from Neurospora crassa in Pichia pastoris [J]. J. Agric. Sci. Technol., 2016, 18(4): 64-72.
|
33 |
RAMOS J, LAUX V, HAERTLEIN M, et al.. Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme[J]. IUCrJ, 2021, 8(Pt 3): 372-386.
|