生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 724-737.DOI: 10.19586/j.2095-2341.2024.0119
• 进展评述 • 上一篇
姜浩1,2(), 杨和生3, 王波2, 程在全2, 孟焕芝3, 周吉云3, 张云2, 肖素勤2, 刘丽2, 殷富有2, 钟巧芳2, 李金璐2, 张敦宇2, 陈玲2(
)
收稿日期:
2024-06-27
接受日期:
2024-08-13
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
陈玲
作者简介:
姜浩 E-mail: 2361129552@qq.com
基金资助:
Hao JIANG1,2(), Hesheng YANG3, Bo WANG2, Zaiquan CHENG2, Huanzhi MENG3, Jiyun ZHOU3, Yun ZHANG2, Suqin XIAO2, Li LIU2, Fuyou YIN2, Qiaofang ZHONG2, Jinlu LI2, Dunyu ZHANG2, Ling CHEN2(
)
Received:
2024-06-27
Accepted:
2024-08-13
Online:
2024-09-25
Published:
2024-10-22
Contact:
Ling CHEN
摘要:
稻种资源是栽培稻育种的物质基础,也是研究栽培稻起源、进化、发育和基因功能的重要对象。在众多野生稻中,普通野生稻与栽培稻亲缘关系最近,是培育栽培稻新品种的优异基因供体,因此了解清楚其遗传背景尤为重要。以云南普通野生稻为对象,对其遗传背景的研究和有利基因的运用进行总结和分析,首先详细梳理了近年来从云南普通野生稻资源中发掘出的优异特性,阐述了其各种优良性状;其次系统总结了云南普通野生稻有利基因的发掘现状,囊括了目前从中发掘出来的重要功能基因;然后综述了云南普通野生稻优异特性在创制新种质方面所取得的成就,包括滇9型籼型不育系的育成及大量育种中间材料的获得;最后针对云南普通野生稻开发研究的优势和存在的问题,提出今后的研究重点以及有利基因发掘利用的建议,并对其利用的潜力进行了展望,以期为云南普通野生稻的进一步研究、开发和利用提供理论支持。
中图分类号:
姜浩, 杨和生, 王波, 程在全, 孟焕芝, 周吉云, 张云, 肖素勤, 刘丽, 殷富有, 钟巧芳, 李金璐, 张敦宇, 陈玲. 近40年云南普通野生稻优异特性及有利基因的发掘与利用[J]. 生物技术进展, 2024, 14(5): 724-737.
Hao JIANG, Hesheng YANG, Bo WANG, Zaiquan CHENG, Huanzhi MENG, Jiyun ZHOU, Yun ZHANG, Suqin XIAO, Li LIU, Fuyou YIN, Qiaofang ZHONG, Jinlu LI, Dunyu ZHANG, Ling CHEN. Exploration and Utilization of the Excellent Characteristics and Favorable Genes of Yunnan Common Wild Rice(Oryza rufipogon Griff.) in the Past 40 Years[J]. Current Biotechnology, 2024, 14(5): 724-737.
控制性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
苗期耐热 | 元江普通野生稻/特青 | 4 | 1 | [ |
抽穗扬花期耐热 | 元江普通野生稻/特青 | 1 | 1 | [ |
抽穗扬花期耐热 | 元江普通野生稻/蜀恢527 | 1 | 0 | [ |
苗期耐低氮 | 元江普通野生稻/特青 | 19 | 17 | [ |
全生育期耐低氮 | 元江普通野生稻/特青 | 17 | 5 | [ |
芽期耐铝 | 元江普通野生稻/特青 | 7 | 2 | [ |
苗期耐铝 | 元江普通野生稻/特青 | 31 | 36 | [ |
苗期耐盐 | 元江普通野生稻/特青 | 13 | 2 | [ |
表1 云南普通野生稻与栽培稻杂交发掘的抗(耐)逆境基因
Table 1 Resistance (tolerance) adversity genes detected from the hybrid combination of cultivated rice and Yunnan common wild rice
控制性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
苗期耐热 | 元江普通野生稻/特青 | 4 | 1 | [ |
抽穗扬花期耐热 | 元江普通野生稻/特青 | 1 | 1 | [ |
抽穗扬花期耐热 | 元江普通野生稻/蜀恢527 | 1 | 0 | [ |
苗期耐低氮 | 元江普通野生稻/特青 | 19 | 17 | [ |
全生育期耐低氮 | 元江普通野生稻/特青 | 17 | 5 | [ |
芽期耐铝 | 元江普通野生稻/特青 | 7 | 2 | [ |
苗期耐铝 | 元江普通野生稻/特青 | 31 | 36 | [ |
苗期耐盐 | 元江普通野生稻/特青 | 13 | 2 | [ |
基因名称 | 控制性状 | 染色体 | 连锁标记 | 贡献率/% | 加性效应值/% | 参考文献 |
---|---|---|---|---|---|---|
qHTS1-1 | 苗期耐热 | 1 | RM23、RM5 | 14.63 | 0.8 | [ |
qHT1 | 抽穗开花期耐热 | 1 | RM499、RM1320 | 12 | 9.13 | [ |
qHTH5 | 抽穗扬花期耐热 | 5 | RM592 | — | 5.2 | [ |
RM17921 | — | 11.3 | [ | |||
qLNT7-2 | 苗期耐低氮 | 7 | RM172 | 10 | 13.94 | [ |
qRSW9-1 | 苗期耐低氮 | 9 | RM105 | 13 | 12.34 | [ |
qRRW9-2 | 苗期耐低氮 | 9 | RM201 | 10 | 13.20 | [ |
qRPW9-1 | 苗期耐低氮 | 9 | RM105 | 12 | 13.45 | [ |
qRPW9-2 | 苗期耐低氮 | 9 | RM201 | 10 | 7.65 | [ |
qRPh7 | 全生育期耐低氮 | 7 | RM5344 | 12 | 3.28 | [ |
qRPp8 | 全生育期耐低氮 | 8 | RM339 | 16 | 4.47 | [ |
qRPs3 | 全生育期耐低氮 | 3 | RM6480 | 16 | 21.64 | [ |
qRGy1 | 全生育期耐低氮 | 1 | — | 14 | — | [ |
qRGy12 | 全生育期耐低氮 | 12 | RM453 | 15 | — | [ |
qGIR9-1 | 芽期耐铝 | 9 | RM219 | 12 | 5.9 | [ |
qDWIR6 | 苗期耐铝 | 6 | RM340 | 21 | 35.81 | [ |
qPHIR10 | 苗期耐铝 | 10 | RM467 | 10 | 7.67 | [ |
qCR12-3 | 苗期耐铝 | 12 | RM277 | 11 | 14.79 | [ |
qPHIR3 | 苗期耐铝 | 3 | RM231 | 10 | 3.79 | [ |
qPHIR9 | 苗期耐铝 | 9 | RM296 | 11 | 4.82 | [ |
qSTS1 | 苗期耐盐 | 1 | RM243 | 11 | 0.69 | [ |
qSTS7 | 苗期耐盐 | 7 | RM10 | 10 | 0.44 | [ |
qRRW6 | 苗期耐盐 | 6 | RM276 | 17 | 33 | [ |
qRRW7 | 苗期耐盐 | 7 | RM560 | 22 | 22.3 | [ |
qRRW10 | 苗期耐盐 | 10 | RM271 | 26 | 22.7 | [ |
qRSW7 | 苗期耐盐 | 7 | RM560 | 11 | 14.1 | [ |
qRSW10 | 苗期耐盐 | 10 | RM271 | 19 | 17.3 | [ |
qRTW6 | 苗期耐盐 | 6 | RM276 | 11 | 22.8 | [ |
qRTW7 | 苗期耐盐 | 7 | RM560 | 14 | 15.8 | [ |
qRTW10 | 苗期耐盐 | 10 | RM271 | 22 | 18.5 | [ |
表2 云南普通野生稻抗(耐)逆境的主效QTL
Table 2 The main effect QTL associated with resistance (tolerance) stress identified from Yunnan common wild rice
基因名称 | 控制性状 | 染色体 | 连锁标记 | 贡献率/% | 加性效应值/% | 参考文献 |
---|---|---|---|---|---|---|
qHTS1-1 | 苗期耐热 | 1 | RM23、RM5 | 14.63 | 0.8 | [ |
qHT1 | 抽穗开花期耐热 | 1 | RM499、RM1320 | 12 | 9.13 | [ |
qHTH5 | 抽穗扬花期耐热 | 5 | RM592 | — | 5.2 | [ |
RM17921 | — | 11.3 | [ | |||
qLNT7-2 | 苗期耐低氮 | 7 | RM172 | 10 | 13.94 | [ |
qRSW9-1 | 苗期耐低氮 | 9 | RM105 | 13 | 12.34 | [ |
qRRW9-2 | 苗期耐低氮 | 9 | RM201 | 10 | 13.20 | [ |
qRPW9-1 | 苗期耐低氮 | 9 | RM105 | 12 | 13.45 | [ |
qRPW9-2 | 苗期耐低氮 | 9 | RM201 | 10 | 7.65 | [ |
qRPh7 | 全生育期耐低氮 | 7 | RM5344 | 12 | 3.28 | [ |
qRPp8 | 全生育期耐低氮 | 8 | RM339 | 16 | 4.47 | [ |
qRPs3 | 全生育期耐低氮 | 3 | RM6480 | 16 | 21.64 | [ |
qRGy1 | 全生育期耐低氮 | 1 | — | 14 | — | [ |
qRGy12 | 全生育期耐低氮 | 12 | RM453 | 15 | — | [ |
qGIR9-1 | 芽期耐铝 | 9 | RM219 | 12 | 5.9 | [ |
qDWIR6 | 苗期耐铝 | 6 | RM340 | 21 | 35.81 | [ |
qPHIR10 | 苗期耐铝 | 10 | RM467 | 10 | 7.67 | [ |
qCR12-3 | 苗期耐铝 | 12 | RM277 | 11 | 14.79 | [ |
qPHIR3 | 苗期耐铝 | 3 | RM231 | 10 | 3.79 | [ |
qPHIR9 | 苗期耐铝 | 9 | RM296 | 11 | 4.82 | [ |
qSTS1 | 苗期耐盐 | 1 | RM243 | 11 | 0.69 | [ |
qSTS7 | 苗期耐盐 | 7 | RM10 | 10 | 0.44 | [ |
qRRW6 | 苗期耐盐 | 6 | RM276 | 17 | 33 | [ |
qRRW7 | 苗期耐盐 | 7 | RM560 | 22 | 22.3 | [ |
qRRW10 | 苗期耐盐 | 10 | RM271 | 26 | 22.7 | [ |
qRSW7 | 苗期耐盐 | 7 | RM560 | 11 | 14.1 | [ |
qRSW10 | 苗期耐盐 | 10 | RM271 | 19 | 17.3 | [ |
qRTW6 | 苗期耐盐 | 6 | RM276 | 11 | 22.8 | [ |
qRTW7 | 苗期耐盐 | 7 | RM560 | 14 | 15.8 | [ |
qRTW10 | 苗期耐盐 | 10 | RM271 | 22 | 18.5 | [ |
农艺性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
株高 | 元江普通野生稻/特青 | 18 | 1 | [ |
剑叶长 | 元江普通野生稻/特青 | 6 | 2 | [ |
剑叶宽 | 元江普通野生稻/特青 | 1 | 6 | [ |
剑叶长宽比 | 元江普通野生稻/特青 | 4 | 0 | [ |
分蘖数 | 元江普通野生稻/特青 | 4 | 1 | [ |
抽穗期 | 元江普通野生稻/特青 | 4 | 2 | [ |
单株有效穗 | 元江普通野生稻/特青 | 20 | 12 | [ |
单株有效穗 | 元江普通野生稻/9311 | 5 | 0 | [ |
每穗粒数 | 元江普通野生稻/特青 | 9 | 17 | [ |
每穗粒数 | 元江普通野生稻/9311 | 1 | 2 | [ |
每穗实粒数 | 元江普通野生稻/特青 | 10 | 15 | [ |
每穗实粒数 | 元江普通野生稻/9311 | 2 | 2 | [ |
结实率 | 元江普通野生稻/特青 | 5 | 15 | [ |
结实率 | 元江普通野生稻/9311 | 0 | 1 | [ |
穗长 | 元江普通野生稻/特青 | 2 | 3 | [ |
着粒密度 | 元江普通野生稻/特青 | 1 | 2 | [ |
谷粒长度 | 元江普通野生稻/特青 | 4 | 0 | [ |
谷粒宽度 | 元江普通野生稻/特青 | 2 | 3 | [ |
谷粒长宽比 | 元江普通野生稻/特青 | 8 | 0 | [ |
千粒重 | 元江普通野生稻/特青 | 9 | 21 | [ |
千粒重 | 元江普通野生稻/9311 | 1 | 8 | [ |
每穗粒重 | 元江普通野生稻/特青 | 5 | 10 | [ |
单株产量 | 元江普通野生稻/特青 | 7 | 16 | [ |
单株产量 | 元江普通野生稻/9311 | 1 | 3 | [ |
穗颈大维管束 | 元江普通野生稻/特青 | 0 | 7 | [ |
穗颈小维管束 | 元江普通野生稻/特青 | 1 | 4 | [ |
穗一次枝梗数 | 元江普通野生稻/特青 | 1 | 3 | [ |
穗二次枝梗数 | 元江普通野生稻/特青 | 1 | 3 | [ |
穗颖花数 | 元江普通野生稻/特青 | 2 | 5 | [ |
净光合速率 | 元江普通野生稻/特青 | 3 | 0 | [ |
芒性 | 元江普通野生稻/特青 | 2 | 0 | [ |
落粒性 | 元江普通野生稻/特青 | 3 | 0 | [ |
芒长 | 元江普通野生稻/9311 | 1 | 0 | [ |
散穗性状 | 元江普通野生稻/特青 | 1 | 0 | [ |
匍匐茎 | 元江普通野生稻/特青 | 1 | 0 | [ |
杂种劣势 | 景洪普通野生稻/特青 | 1 | 1 | [ |
表3 云南普通野生稻与栽培稻杂交发掘的农艺性状相关QTL
Table 3 QTL for agronomic traits detected from the hybrid combination of cultivated rice and Yunnan common wild rice
农艺性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
株高 | 元江普通野生稻/特青 | 18 | 1 | [ |
剑叶长 | 元江普通野生稻/特青 | 6 | 2 | [ |
剑叶宽 | 元江普通野生稻/特青 | 1 | 6 | [ |
剑叶长宽比 | 元江普通野生稻/特青 | 4 | 0 | [ |
分蘖数 | 元江普通野生稻/特青 | 4 | 1 | [ |
抽穗期 | 元江普通野生稻/特青 | 4 | 2 | [ |
单株有效穗 | 元江普通野生稻/特青 | 20 | 12 | [ |
单株有效穗 | 元江普通野生稻/9311 | 5 | 0 | [ |
每穗粒数 | 元江普通野生稻/特青 | 9 | 17 | [ |
每穗粒数 | 元江普通野生稻/9311 | 1 | 2 | [ |
每穗实粒数 | 元江普通野生稻/特青 | 10 | 15 | [ |
每穗实粒数 | 元江普通野生稻/9311 | 2 | 2 | [ |
结实率 | 元江普通野生稻/特青 | 5 | 15 | [ |
结实率 | 元江普通野生稻/9311 | 0 | 1 | [ |
穗长 | 元江普通野生稻/特青 | 2 | 3 | [ |
着粒密度 | 元江普通野生稻/特青 | 1 | 2 | [ |
谷粒长度 | 元江普通野生稻/特青 | 4 | 0 | [ |
谷粒宽度 | 元江普通野生稻/特青 | 2 | 3 | [ |
谷粒长宽比 | 元江普通野生稻/特青 | 8 | 0 | [ |
千粒重 | 元江普通野生稻/特青 | 9 | 21 | [ |
千粒重 | 元江普通野生稻/9311 | 1 | 8 | [ |
每穗粒重 | 元江普通野生稻/特青 | 5 | 10 | [ |
单株产量 | 元江普通野生稻/特青 | 7 | 16 | [ |
单株产量 | 元江普通野生稻/9311 | 1 | 3 | [ |
穗颈大维管束 | 元江普通野生稻/特青 | 0 | 7 | [ |
穗颈小维管束 | 元江普通野生稻/特青 | 1 | 4 | [ |
穗一次枝梗数 | 元江普通野生稻/特青 | 1 | 3 | [ |
穗二次枝梗数 | 元江普通野生稻/特青 | 1 | 3 | [ |
穗颖花数 | 元江普通野生稻/特青 | 2 | 5 | [ |
净光合速率 | 元江普通野生稻/特青 | 3 | 0 | [ |
芒性 | 元江普通野生稻/特青 | 2 | 0 | [ |
落粒性 | 元江普通野生稻/特青 | 3 | 0 | [ |
芒长 | 元江普通野生稻/9311 | 1 | 0 | [ |
散穗性状 | 元江普通野生稻/特青 | 1 | 0 | [ |
匍匐茎 | 元江普通野生稻/特青 | 1 | 0 | [ |
杂种劣势 | 景洪普通野生稻/特青 | 1 | 1 | [ |
基因名称 | 控制性状 | 染色体 | 连锁标记 | 贡献率/% | 加性效应值/% | 参考文献 |
---|---|---|---|---|---|---|
qPH1-1 | 株高 | 1 | OSR27 | 10 | 16.34 | [ |
qPH1-2 | 株高 | 1 | RM212 | 12 | 17.35 | [ |
qPH1-3 | 株高 | 1 | RM283 | 27 | 25.62 | [ |
qPH1-4 | 株高 | 1 | RM104 | 28 | 26.28 | [ |
qPH1-5 | 株高 | 1 | RM315 | 11 | 15.95 | [ |
qPH5 | 株高 | 5 | RM289 | 17 | 13.03 | [ |
qPH8 | 株高 | 8 | RM264 | 23 | 10.55 | [ |
qPH7 | 株高 | 7 | RM298 | 31 | 11.13 | [ |
qPH12-1 | 株高 | 12 | RM277 | 18 | 8.36 | [ |
qPH12-2 | 株高 | 12 | RM17 | 22 | 16.45 | [ |
qDTH8 | 抽穗期 | 8 | RM25 | 13 | 3.76 | [ |
qPN1 | 单株有效穗 | 1 | RM1 | 16 | 4.69 | [ |
qPN2-1 | 单株有效穗 | 2 | RM6 | 12 | 2.78 | [ |
qPN2-2 | 单株有效穗 | 2 | RM263 | 13 | 4.22 | [ |
qPN3 | 单株有效穗 | 3 | OSR31 | 12 | 2.42 | [ |
qPN4 | 单株有效穗 | 4 | RM255 | 12 | 4.16 | [ |
qPPL7 | 单株有效穗 | 7 | RM491 | 20 | 2.77 | [ |
qPN7 | 单株有效穗 | 7 | RM298 | 30 | 2.88 | [ |
qPN9 | 单株有效穗 | 9 | RM219 | 19 | 4.32 | [ |
qPPL10 | 单株有效穗 | 10 | RM333 | 10 | 1.13 | [ |
qSPP8 | 每穗粒数 | 8 | RM152 | 12 | 19.71 | [ |
qGP8-1 | 每穗粒数 | 8 | RM310 | 11 | 46.71 | [ |
qGP8-2 | 每穗粒数 | 8 | RM337 | 24 | 100.75 | [ |
qGPP3 | 每穗实粒数 | 3 | RM232 | 10 | 21.06 | [ |
qGPP5 | 每穗实粒数 | 5 | RM3334 | 10 | 24.01 | [ |
qFG8 | 每穗实粒数 | 8 | RM337 | 23 | 62 | [ |
qSS12 | 结实率 | 12 | RM453 | 12 | 0.01 | [ |
qLWR1 | 谷粒长宽比 | 1 | RM1061、RM212 | 16 | 0.12 | [ |
qLWR5 | 谷粒长宽比 | 5 | RM598、RM3351 | 20 | 0.2 | [ |
qLWR9 | 谷粒长宽比 | 9 | RM3919、M1099 | 11 | 0.21 | [ |
qGLW1 | 谷粒长宽比 | 1 | RM212 | 10 | 0.13 | [ |
qGW1 | 千粒重 | 1 | RM306 | 14 | 0.95 | [ |
qGW2 | 千粒重 | 2 | RM318 | 15 | 1.70 | [ |
qGW4-1 | 千粒重 | 4 | RM564 | 38 | 1.48 | [ |
qGW4 | 千粒重 | 4 | RM335 | 13 | 1.64 | [ |
qGW6 | 千粒重 | 6 | RM253 | 13 | 0.89 | [ |
qGW9 | 千粒重 | 9 | RM219 | 11 | 0.95 | [ |
qGW10 | 千粒重 | 10 | RM271 | 11 | 0.91 | [ |
qGW12 | 千粒重 | 12 | RM235 | 27 | 3.15 | [ |
qYP8 | 每穗粒重 | 8 | RM337 | 21 | 1.43 | [ |
qGY3 | 单株产量 | 3 | OSR31 | 13 | 8 | [ |
qGY4 | 单株产量 | 4 | RM273 | 23 | 13.47 | [ |
qNPR12 | 净光合速率 | 12 | RM453 | 11 | 11.28 | [ |
qSSH4 | 落粒性 | 4 | RM131 | 44 | 78.59 | [ |
qAW8 | 芒性 | 8 | RM308 | 18 | 2.07 | [ |
SHA1 | 落粒性 | 4 | RM6441、M1113 | — | — | [ |
LABA1 | 芒长 | 4 | Seq3、RM17242 | — | — | [ |
OsLG1 | 散穗性状 | 4 | M5、M6 | — | — | [ |
PROG1 | 匍匐茎 | 7 | pr5、pr7 | — | — | [ |
hwi-1 | 杂种劣势 | 11 | InDel-3、MG17 | — | — | [ |
表4 云南普通野生稻农艺性状相关主效QTL
Table 4 The main effect QTL associated with agronomic traits from Yunnan common wild rice
基因名称 | 控制性状 | 染色体 | 连锁标记 | 贡献率/% | 加性效应值/% | 参考文献 |
---|---|---|---|---|---|---|
qPH1-1 | 株高 | 1 | OSR27 | 10 | 16.34 | [ |
qPH1-2 | 株高 | 1 | RM212 | 12 | 17.35 | [ |
qPH1-3 | 株高 | 1 | RM283 | 27 | 25.62 | [ |
qPH1-4 | 株高 | 1 | RM104 | 28 | 26.28 | [ |
qPH1-5 | 株高 | 1 | RM315 | 11 | 15.95 | [ |
qPH5 | 株高 | 5 | RM289 | 17 | 13.03 | [ |
qPH8 | 株高 | 8 | RM264 | 23 | 10.55 | [ |
qPH7 | 株高 | 7 | RM298 | 31 | 11.13 | [ |
qPH12-1 | 株高 | 12 | RM277 | 18 | 8.36 | [ |
qPH12-2 | 株高 | 12 | RM17 | 22 | 16.45 | [ |
qDTH8 | 抽穗期 | 8 | RM25 | 13 | 3.76 | [ |
qPN1 | 单株有效穗 | 1 | RM1 | 16 | 4.69 | [ |
qPN2-1 | 单株有效穗 | 2 | RM6 | 12 | 2.78 | [ |
qPN2-2 | 单株有效穗 | 2 | RM263 | 13 | 4.22 | [ |
qPN3 | 单株有效穗 | 3 | OSR31 | 12 | 2.42 | [ |
qPN4 | 单株有效穗 | 4 | RM255 | 12 | 4.16 | [ |
qPPL7 | 单株有效穗 | 7 | RM491 | 20 | 2.77 | [ |
qPN7 | 单株有效穗 | 7 | RM298 | 30 | 2.88 | [ |
qPN9 | 单株有效穗 | 9 | RM219 | 19 | 4.32 | [ |
qPPL10 | 单株有效穗 | 10 | RM333 | 10 | 1.13 | [ |
qSPP8 | 每穗粒数 | 8 | RM152 | 12 | 19.71 | [ |
qGP8-1 | 每穗粒数 | 8 | RM310 | 11 | 46.71 | [ |
qGP8-2 | 每穗粒数 | 8 | RM337 | 24 | 100.75 | [ |
qGPP3 | 每穗实粒数 | 3 | RM232 | 10 | 21.06 | [ |
qGPP5 | 每穗实粒数 | 5 | RM3334 | 10 | 24.01 | [ |
qFG8 | 每穗实粒数 | 8 | RM337 | 23 | 62 | [ |
qSS12 | 结实率 | 12 | RM453 | 12 | 0.01 | [ |
qLWR1 | 谷粒长宽比 | 1 | RM1061、RM212 | 16 | 0.12 | [ |
qLWR5 | 谷粒长宽比 | 5 | RM598、RM3351 | 20 | 0.2 | [ |
qLWR9 | 谷粒长宽比 | 9 | RM3919、M1099 | 11 | 0.21 | [ |
qGLW1 | 谷粒长宽比 | 1 | RM212 | 10 | 0.13 | [ |
qGW1 | 千粒重 | 1 | RM306 | 14 | 0.95 | [ |
qGW2 | 千粒重 | 2 | RM318 | 15 | 1.70 | [ |
qGW4-1 | 千粒重 | 4 | RM564 | 38 | 1.48 | [ |
qGW4 | 千粒重 | 4 | RM335 | 13 | 1.64 | [ |
qGW6 | 千粒重 | 6 | RM253 | 13 | 0.89 | [ |
qGW9 | 千粒重 | 9 | RM219 | 11 | 0.95 | [ |
qGW10 | 千粒重 | 10 | RM271 | 11 | 0.91 | [ |
qGW12 | 千粒重 | 12 | RM235 | 27 | 3.15 | [ |
qYP8 | 每穗粒重 | 8 | RM337 | 21 | 1.43 | [ |
qGY3 | 单株产量 | 3 | OSR31 | 13 | 8 | [ |
qGY4 | 单株产量 | 4 | RM273 | 23 | 13.47 | [ |
qNPR12 | 净光合速率 | 12 | RM453 | 11 | 11.28 | [ |
qSSH4 | 落粒性 | 4 | RM131 | 44 | 78.59 | [ |
qAW8 | 芒性 | 8 | RM308 | 18 | 2.07 | [ |
SHA1 | 落粒性 | 4 | RM6441、M1113 | — | — | [ |
LABA1 | 芒长 | 4 | Seq3、RM17242 | — | — | [ |
OsLG1 | 散穗性状 | 4 | M5、M6 | — | — | [ |
PROG1 | 匍匐茎 | 7 | pr5、pr7 | — | — | [ |
hwi-1 | 杂种劣势 | 11 | InDel-3、MG17 | — | — | [ |
性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
出糙率 | 元江普通野生稻/特青 | 0 | 3 | [ |
整精米率 | 元江普通野生稻/特青 | 0 | 1 | [ |
垩白粒率 | 元江普通野生稻/特青 | 1 | 4 | [ |
垩白度 | 元江普通野生稻/特青 | 1 | 2 | [ |
籽粒储存蛋白 | 元江普通野生稻/特青 | 7 | 7 | [ |
表5 云南普通野生稻与栽培稻杂交发掘的稻米品质性状相关QTL
Table 5 QTL associated with grain quality detected from the hybrid combination of cultivated rice and Yunnan common wild rice
性状 | 杂交组合 | 等位基因为正效的QTL数量 | 参考文献 | |
---|---|---|---|---|
普通野生稻 | 栽培稻 | |||
出糙率 | 元江普通野生稻/特青 | 0 | 3 | [ |
整精米率 | 元江普通野生稻/特青 | 0 | 1 | [ |
垩白粒率 | 元江普通野生稻/特青 | 1 | 4 | [ |
垩白度 | 元江普通野生稻/特青 | 1 | 2 | [ |
籽粒储存蛋白 | 元江普通野生稻/特青 | 7 | 7 | [ |
品种 | HEN11 | SCYC-6 | YN7 | YN11 | FUJ | YN24 |
---|---|---|---|---|---|---|
Y17 | R | R | R | R | MR | R |
Y99 | R | R | R | R | MR | R |
Y123 | MR | MS | MR | R | MR | MR |
Y201 | R | MR | R | R | MR | MR |
Y207 | R | R | R | R | MR | R |
Y235 | MR | R | R | R | MR | R |
Y252 | R | R | R | R | R | R |
Y253 | R | R | R | R | MR | R |
Y260 | R | R | MR | R | R | MR |
Y265 | R | R | R | MS | R | R |
Y273 | R | MS | MR | R | MR | MR |
Y295 | R | R | R | MS | R | R |
表6 普通野生稻渗入系品种对水稻白叶枯病优势小种具有抗性的材料[63]
Table. 6 Screening of rice varieties of wild rice to bacterial blight resistant germplasms[63]
品种 | HEN11 | SCYC-6 | YN7 | YN11 | FUJ | YN24 |
---|---|---|---|---|---|---|
Y17 | R | R | R | R | MR | R |
Y99 | R | R | R | R | MR | R |
Y123 | MR | MS | MR | R | MR | MR |
Y201 | R | MR | R | R | MR | MR |
Y207 | R | R | R | R | MR | R |
Y235 | MR | R | R | R | MR | R |
Y252 | R | R | R | R | R | R |
Y253 | R | R | R | R | MR | R |
Y260 | R | R | MR | R | R | MR |
Y265 | R | R | R | MS | R | R |
Y273 | R | MS | MR | R | MR | MR |
Y295 | R | R | R | MS | R | R |
1 | 刘丽辉,蒋慧敏,王佩旋,等.野生稻内生固氮菌多样性研究进展[J].生物技术进展,2017,7(6):567-579. |
LIU L H, JIANG H M, WANG P X, et al.. Research progress on diversity of endophytic diazotrophs in wild rices[J]. Curr. Biotechnol., 2017, 7(6): 567-579. | |
2 | 庞汉华,杨庆文,赵江.中国野生稻资源考察、鉴定和保存概况[J].植物遗传资源科学, 2000,1(4): 52-56. |
PANG H H, YANG Q W, ZHAO J. Exploration, collection, evaluation and conservation of wild rice resources in China[J]. | |
GenetPlant. Resour. Sci., 2000, 1(4): 52-56. | |
3 | 谭禄宾,张培江,付永彩,等.云南元江普通野生稻株高和抽穗期QTL定位研究[J].遗传学报,2004,31(10):1123-1128. |
TAN L B, ZHANG P J, FU Y C, et al.. Identification of quantitative trait loci controlling plant height and days to heading from Yuanjiang common wild rice (Oryza rufipogon griff.)[J]. Acta Genet. Sin., 2004, 31(10): 1123-1128. | |
4 | 荆彦辉,孙传清,谭禄宾,等.云南元江普通野生稻穗颈维管束和穗部性状的QTL分析[J].遗传学报,2005,32(2):178-182. |
JING Y H, SUN C Q, TAN L B, et al.. Mapping QTLs controlling vascular bundle and panicle-related traits from Yuanjiang common wild rice (Oryza rufipogon griff.)[J]. Acta Genet. Sin., 2005, 32(2): 178-182. | |
5 | 刘家富,奎丽梅,朱作峰,等.普通野生稻稻米加工品质和外观品质性状QTL定位[J].农业生物技术学报,2007,15(1):90-96. |
LIU J F, KUI L M, ZHU Z F, et al.. Identification of QTLs associated with processing quality and appearance quality of common wild rice (Oryza rufipogon griff.)[J]. J. Agric. Biotechnol., 2007, 15(1): 90-96. | |
6 | TAN L, LIU F, XUE W, et al.. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci[J]. J. Integr. Plant Biol., 2007, 49(6): 871-884. |
7 | 奎丽梅,谭禄宾,涂建,等.云南元江野生稻抽穗开花期耐热QTL定位[J].农业生物技术学报,2008,16(3):461-464. |
KUI L M, TAN L B, TU J, et al.. Identification of QTLs associated with heat tolerance of Yuanjiang common wild rice (Oryza rufipogon griff.) at flowering stage[J]. J. Agric. Biotechnol., 2008, 16(3): 461-464. | |
8 | FU Q, ZHANG P, TAN L, et al.. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.)[J]. Genet Genomics, 2010, 37(2): 147-157. |
9 | 曾亚文,陈勇,徐福荣,等.云南三种野生稻的濒危现状与研究利用[J].云南农业科技,1999(2):10-12. |
ZENG Y W, CHEN Y, XU F R, et al.. The endangered status and research utilization of three species of wild rice in Yunnan[J]. Yunnan Agric. Sci. Technol., 1999(2): 10-12. | |
10 | 陈勇,曾亚文,梁斌.云南野生稻与栽培稻杂交F2分离群体的性状分布多态性[J].西南农业学报,1997,10(3): 16-20. |
CHEN Y, ZENG Y W, LIANG B. Polymorphism of character distribution of F2 segregated populations from Yunnan wild rice × cultivated rice [J]. Southwest China J. Agric. Sci., 1997, 10(3): 16-20. | |
11 | 彭绍裘,魏子生,毛昌祥,等.云南省疣粒野生稻、药用野生稻和普通野生稻多抗性鉴定[J].植物病理学报,1982,12(4): 58-60. |
PENG S Q, WEI Z S, MAO C X, et al.. Identification of multiresistance of O. meyeriana, O. officinalis and O. sativa f. spantanea growing in Yunan Province[J]. Acta Phytopathol. Sin., 1982, 12(4): 58-60. | |
12 | 邓程振,余南.从野生稻中可找到黄矮和普通矮缩病的抗源[J].江西农业科技,1984(10):12-13. |
DENG C Z, YU N. Resistant sources of yellow dwarf and common dwarf can be found in wild rice[J]. Jiangxi Agric. Sci. Technol., 1984(10): 12-13. | |
13 | 梁斌,肖放华,黄费元,等.云南野生稻对稻瘟病的抗性评价[J].中国水稻科学,1999,13(3): 183-185. |
LIANG B, XIAO F H, HUANG F Y, et al.. Resistance assessment of Yunnan wild rice to blast[J]. Chin. J. Rice Sci., 1999, 13(3): 183-185. | |
14 | YANG M Z, CHENG Z Q, CHEN S N, et al.. A rice blast-resistance genetic resource from wild rice in Yunnan, China[J]. J. Plant Physiol. Mol. Biol., 2007, 33(6): 589-595. |
15 | 耿显胜,杨明挚,黄兴奇,等.云南景洪直立型普通野生稻抗稻瘟病Pi-ta+等位基因的克隆与分析[J].遗传,2008,30(1):109-114. |
GENG X S, YANG M Z, HUANG X Q, et al.. Cloning and analyzing of rice blast resistance gene Pi-ta+ allele from Jinghong erect type of common wild rice (Oryza rufipogon Griff) in Yunnan[J]. Hereditas, 2008, 30(1): 109-114. | |
16 | XIA Z H, HAN F, GAO L F, et al.. Application of functional markers to identify genes for bacterial blight resistance in Oryza rufipogon [J]. Rice Sci., 2010, 17(1): 73-76. |
17 | CHENG Z Q, YING F Y, LI D Q, et al.. Genetic diversity of wild rice species in Yunnan province of China[J]. Rice Sci., 2012, 19(1): 21-28. |
18 | 李定琴,陈玲,李维蛟,等.云南3种野生稻中抗白叶枯病基因的鉴定[J].作物学报,2015,41(3):386-393. |
LI D Q, CHEN L, LI W J, et al.. Identification of bacterial blight resistance gene in Yunnan wild rice[J]. Acta Agron. Sin., 2015, 41(3): 386-393. | |
19 | 余腾琼,肖素勤,殷富有,等.云南野生稻和地方稻资源抗白叶枯病分析[J].植物保护学报,2016,43(5):774-781. |
YU T Q, XIAO S Q, YIN F Y, et al.. Identification of Yunnan wild rice and local landraces resistance ability to Xanthomonas oryzae pv. oryzae[J]. J. Plant Prot., 2016, 43(5): 774-781. | |
20 | 谢志成,杨卿,陈璟,等.野生稻对潜根线虫的抗性调查[J].福建农林大学学报(自然科学版),2007,36(3):241-243. |
XIE Z C, YANG Q, CHEN J, et al.. Investigation on the resistance of wild rice species against the rice root nematodes[J]. J. Fujian Agric. For. Univ. Nat. Sci. Ed., 2007, 36(3): 241-243. | |
21 | 邢佳鑫,陈玲,李维蛟,等.云南野生稻抗褐飞虱评价及其抗性基因鉴定[J].西北植物学报,2015,35(12):2391-2398. |
XING J X, CHEN L, LI W J, et al.. Evaluation of the brown plant hopper resistance and identification of resistance genes from wild rice in Yunnan[J]. Acta Bot. Boreali-Occidentalia Sin., 2015, 35(12): 2391-2398. | |
22 | 袁平荣,贺庆瑞,文国松.云南元江普通野生稻的地理分布、生态环境及植物学特征[J].云南农业科技,1994(4):3-4. |
YUAN P R, HE Q R, WEN G S. Geographical distribution, ecological environment and botanical characteristics of YunnanYuanjiang common wild rice[J]. Yunnan Agric. Sci. Technol., 1994(4): 3-4. | |
23 | 蒋春苗,黄兴奇,李定琴,等.云南野生稻叶茎根组织结构特性的比较研究[J].西北植物学报,2012,32(1):99-105. |
JIANG C M, HUANG X Q, LI D Q, et al.. Comparative study on the structure characteristics of the leaf, stem, root of Yunnan wild rice species[J]. Acta Bot. Boreali-Occidentalia Sin., 2012, 32(1): 99-105. | |
24 | 庞汉华.中国普通野生稻种资源若干特性分析[J].作物品种资源,1992(4):6-8. |
PANG H H. Analysis of some characteristics of common wild rice germplasm resources in China[J]. China Seed Ind., 1992(4): 6-8. | |
25 | 万常炤,范洪良,陆家安,等.我国三个野生稻种的稻米蒸煮品质[J].上海农业学报,1993,9(2):37-42. |
WAN C Z, FAN H L, Lu J A . et al .. Studies on cooking quality of three wild Oryza species in China[J]. Acta Agric. Shanghai, 1993, 9(2): 37-42. | |
26 | 吴成军.云南野生稻资源的保护生物学与遗传性状研究[D].上海:复旦大学,2004. |
WU C J. Study on the conservation biology and genetic characters of wild rice resources in Yunnan[D]. Shanghai: Fudan University, 2004. | |
27 | CHENG Z Q, HUANG X Q, ZHANG Y Z, et al.. Diversity in the content of some nutritional components in husked seeds of three wild rice species and rice varieties in Yunnan Province of China[J]. J. Integr. Plant Biol., 2005, 47(10): 1260-1270. |
28 | 徐玲玲,陈善娜,程在全,等.野生稻材料中氨基酸、碳、氮含量分析及其在种质资源评价中的应用[J].云南大学学报(自然科学版),2006,28(1):78-82, 87. |
XU L L, CHEN S N, CHENG Z Q, et al.. The content analysis of amino acids, carbon, nitrogen in wild rice and their application on assessment of crop germplasm resources[J]. J. Yunnan Univ. Nat. Sci. Ed., 2006, 28(1): 78-82, 87. | |
29 | 张忠仙.五个野生稻种质的生殖特性分析[J].南方农业,2016,10(6):250-251. |
ZHANG Z X. Analysis on reproductive characteristics of five wild rice germplasm[J]. South China Agric., 2016, 10(6): 250-251. | |
30 | XING J, ZHANG D, YIN F, et al.. Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon)[J]. Plant Dis., 2021, 105(12): 4106-4112. |
31 | KHATIWADA S P, SENADHIRA D, CARPENA A L, et al.. Variability and genetics of tolerance for aluminum toxicity in rice (Oryza sativa L.)[J]. Theor. Appl. Genet., 1996, 93(5-6): 738-744. |
32 | SHAKIBA E, EDWARDS J D, JODARI F, et al.. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis[J/OL]. PLoS One, 2017, 12(3): e0172133[2024-06-01]. . |
33 | NGUYEN V T, NGUYEN B D, SARKARUNG S, et al.. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds[J]. Mol. Genet. Genom., 2002, 267(6): 772-780. |
34 | NISHIUCHI S, YAMAUCHI T, TAKAHASHI H, et al.. Mechanisms for coping with submergence and waterlogging in rice[J/OL]. Rice, 2012, 5(1): 2[2024-06-01]. . |
35 | TIWARI S, SL K, KUMAR V, et al.. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip[J/OL]. PLoS One, 2016, 11(4): e0153610[2024-06-01]. . |
36 | YOO Y H, NALINI CHANDRAN A K, PARK J C, et al.. OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-seq transcriptome analysis of rice genes in response to water deficiencies[J/OL]. Front. Plant Sci., 2017, 8: 580[2024-06-01]. . |
37 | LEI D, TAN L, LIU F, et al.. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.)[J]. Plant Sci., 2013, 201-202: 121-127. |
38 | 曹志斌,谢红卫,聂元元,等.水稻抽穗扬花期耐热QTL(qHTH5)定位及其遗传效应分析[J].中国水稻科学,2015,29(2):119-125. |
CAO Z B, XIE H W, NIE Y Y, et al.. Mapping a QTL(qHTH5) for heat tolerance at the heading stage on rice chromosome 5 and its genetic effect analysis[J]. Chin. J. Rice Sci., 2015, 29(2): 119-125. | |
39 | ZHANG Y, TAN L, ZHU Z, et al.. TOND1 confers tolerance to nitrogen deficiency in rice[J]. Plant J., 2015, 81(3): 367-376. |
40 | 张辉.水稻耐铝胁迫的QTL解析及水稻颖壳变褐基因的初步定位[D].山东聊城:聊城大学,2010. |
ZHANG H. QTL analysis of resistance to aluminum stress in rice and preliminary localization of rice glume browning gene [D]. Shangdong Liaocheng: Liaocheng University, 2010. | |
41 | 王明卓,樊颖伦,张思亮,等.野生稻渗入系苗期耐铝QTL定位分析[J].江苏农业科学,2013,41(11):25-28. |
WANG M Z, FAN Y L, ZHANG S L, et al.. QTL mapping analysis of aluminum tolerance in wild rice introgression line at seedling stage[J]. Jiangsu Agric. Sci., 2013, 41(11): 25-28. | |
42 | TIAN L, TAN L, LIU F, et al.. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon [J]. J. Genet. Genomics, 2011, 38(12): 593-601. |
43 | 郑修文,张文会,赵志超,等.水稻DH群体苗期耐低氮能力QTL定位分析[J].江苏农业科学,2010,38(3):42-43. |
ZHENG X W, ZHANG W H, ZHAO Z C, et al.. Identification of quantitative trait loci controlling low nitrogen tolerance on the doubled haploid population of rice seedlings[J]. Jiangsu Agric. Sci., 2010, 38(3): 42-43. | |
44 | 谭禄宾.云南元江普通野生稻渗入系的构建及野栽分化性状的基因定位[D].北京:中国农业大学,2004. |
TAN L B. Development of introgression lines of Yuanjiang common wild rice (O . rufipogon Griff.) from Yunnan province and identification of genetic factors controlling the domestication-related traits of rice[D]. Beijing: China Agriculture University, 2004. | |
45 | 王桂娟.云南元江普通野生稻渗入系产量性状及高光效QTL定位分析[D].北京:中国农业大学,2005. |
WANG G J. Identification of QTLS controlling yield traits and high photosynthesis efficiency using introgression lines of Yuanjiang common wild rice (O . rufipogon Griff.) from Yunnan province[D]. Beijing: China Agriculture University, 2005. | |
46 | TAN L, ZHANG P, LIU F, et al.. Quantitative trait loci underlying domestication- and yield-related traits in an Oryza sativa×Oryza rufipogon advanced backcross population[J]. Genome, 2008, 51(9): 692-704. |
47 | LIN Z, GRIFFITH M E, LI X, et al.. Origin of seed shattering in rice (Oryza sativa L.)[J]. Planta, 2007, 226(1): 11-20. |
48 | HUA L, WANG D R, TAN L, et al.. LABA1 a domestication gene associated with long, barbed awns in wild rice[J]. Plant Cell, 2015, 27(7): 1875-1888. |
49 | ZHU Z, TAN L, FU Y, et al.. Genetic control of inflorescence architecture during rice domestication[J/OL]. Nat. Commun., 2013, 4: 2200[2024-06-01]. . |
50 | TAN L, LI X, LIU F, et al.. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nat. Genet., 2008, 40(11): 1360-1364. |
51 | 汪文祥.云南景洪普通野生稻渗入系的构建及杂种劣势互作基因的定位[D].南昌:江西农业大学,2012. |
52 | WANG H, NUSSBAUM-WAGLER T, LI B, et al.. The origin of the naked grains of maize[J]. Nature, 2005, 436(7051): 714-719. |
53 | KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA [J]. Mol. Gen. Genet., 1996, 250(1): 7-16. |
54 | JIAO Y, WANG Y, XUE D, et al.. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat. Genet., 2010, 42(6): 541-544. |
55 | MIURA K, IKEDA M, MATSUBARA A, et al.. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat. Genet., 2010, 42(6): 545-549. |
56 | WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat. Genet., 2012, 44(8): 950-954. |
57 | POONI H S, KUMAR I, KHUSH G S. A comprehensive model for disomically inherited metrical traits expressed in triploid tissues[J]. Heredity, 1992, 69(2): 166-174. |
58 | SHI C H, ZHU J, ZANG R C, et al.. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments[J]. Theor. Appl. Genet., 1997, 95(1): 294-300. |
59 | ZHU J, WEIR B S. Analysis of cytoplasmic and maternal effects. Ⅱ. Genetic models for triploid endosperms[J]. Theor. Appl. Genet., 1994, 89(2-3): 160-166. |
60 | 赵琳琳,李楠,吕志伟,等.野栽渗入系水稻籽粒储藏蛋白质含量的QTL遗传解析[J].江苏农业科学,2015,43(3):50-53. |
ZHAO L L, LI N, LV Z W, et al.. Quantitative analysis of QTLs for grain storage protein content of introgression lines from hybridization between wild rice and cultivated rice wild rice[J]. Jiangsu Agric. Sci., 2015, 43(3): 50-53. | |
61 | 肖叶青,吴小燕,胡兰香,等.赣香B近等基因导入系构建与目标性状筛选[J].分子植物育种,2010,8(6):1128-1132. |
XIAO Y Q, WU X Y, HU L X, et al.. Development of near-isogenic introgression lines on Gangxiang B and evaluation of their traits[J]. Mol. Plant Breed., 2010, 8(6): 1128-1132. | |
62 | 殷富有,李维蛟,郭怡卿,等.普通野生稻杂交后代抗白叶枯病鉴定筛选[J].江西农业学报,2010,22(8):81-84. |
YIN F Y, LI W J, GUO Y Q, et al.. Identification and screening of resistance to rice bacterial blight in common wild rice hybrid offspring[J]. Acta Agric. Jiangxi, 2010, 22(8): 81-84. | |
63 | 杨俊,周丽洪,陈玲,等.云南地区主产水稻和野生稻渗入系对水稻白叶枯病的抗性分析[J].云南农业大学学报(自然科学),2015,30(5):665-670. |
YANG J, ZHOU L H, CHEN L, et al.. Analysis of resistance to bacterial blight of rice in Yunnan area of the production of rice and wild rice introgression lines[J]. J. Yunnan Agric. Univ. Nat. Sci., 2015, 30(5): 665-670. | |
64 | 卢源达,钟巧芳,王波,等.元江普通野生稻中抗白叶枯病基因鉴定与分析[J].华北农学报,2023,38(2):199-205. |
LU Y D, ZHONG Q F, WANG B, et al.. Identification and analysis of resistance genes to bacterial blight in Yuanjiang common wild rice[J]. Acta Agric. Boreali Sin., 2023, 38(2): 199-205. | |
65 | 杨空松,贺浩华,陈小荣.野生稻有利基因的挖掘利用及研究进展[J].种子,2005,24(12):92-95. |
YANG K S, HE H H, CHEN X R. Exploitation, utilization and research progress of favorable genes in wild rice[J]. Seed, 2005, 24(12): 92-95. | |
66 | 宋东海.多元配组杂交在野生稻遗传育种中的应用[J].广东农业科学,1999,26(2):2-3. |
SONG D H. Application of multi-component combination hybridization in genetic breeding of wild rice[J]. Guangdong Agric. Sci., 1999, 26(2): 2-3. | |
67 | SINGH B D, SINGH A K. Marker-assisted plant breeding: principles and practices[M]. New Delhi: Springer, 2015. |
[1] | 尹昭坤, 廖承红, 徐立新, 裴新梧, 袁潜华. 基于ITS序列分析对海南普通野生稻籼粳分化的研究[J]. 生物技术进展, 2012, 2(4): 270-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部