生物技术进展 ›› 2023, Vol. 13 ›› Issue (3): 329-338.DOI: 10.19586/j.2095-2341.2023.0003
收稿日期:
2023-01-11
接受日期:
2023-02-27
出版日期:
2023-05-25
发布日期:
2023-06-12
通讯作者:
仝涛
作者简介:
姚圣泓 E-mail: 2020306010413@cau.edu.cn;
基金资助:
Shenghong YAO1(), Qianqian ZHU1, Zhikai ZHU1, Tao TONG1,2,3(
)
Received:
2023-01-11
Accepted:
2023-02-27
Online:
2023-05-25
Published:
2023-06-12
Contact:
Tao TONG
摘要:
工业大麻是一种四氢大麻酚含量小于0.3%的大麻,含有多种生物活性成分,包括大麻素类、类黄酮类及萜烯类化合物。研究表明,工业大麻中的大麻素类化合物包括大麻二酚、四氢大麻酚和大麻萜酚等,类黄酮类化合物包括山柰酚和芹菜素等,萜烯类化合物包括单萜和倍半萜等,这些活性物质有多种生理功能。总结了近几年来工业大麻的抗癌、抗炎、抗氧化、镇痛、治疗癫痫及保护肝脏等多种生理功能的研究进展,以期为工业大麻在医药、化妆品等领域的应用提供一定理论依据。
中图分类号:
姚圣泓, 祝纤纤, 朱至锴, 仝涛. 工业大麻活性成分及其生理功能研究进展[J]. 生物技术进展, 2023, 13(3): 329-338.
Shenghong YAO, Qianqian ZHU, Zhikai ZHU, Tao TONG. Research Progress on Active Components and Their Physiological Functions of Industrial Hemp[J]. Current Biotechnology, 2023, 13(3): 329-338.
名称 | 结构示意图 | 化学式 | 沸点/℃ | 闪点/℃ | 折射率 |
---|---|---|---|---|---|
大麻二酚 | ![]() | C21H30O2 | 463.9 | 206.3 | 1.545 |
四氢大麻酚 | ![]() | C21H30O2 | 178.6 | 142.1 | 1.529 |
大麻萜酚 | ![]() | C21H32O2 | 470.4 | 207.2 | 1.536 |
大麻萜酚酸 | ![]() | C22H32O4 | 535.7 | 291.9 | 1.555 |
四氢大麻酚酸 | ![]() | C22H30O4 | 436.8 | 142.1 | 1.548 |
四氢大麻素 | ![]() | C19H26O2 | 360.0 | 137.6 | 1.536 |
表1 大麻素类部分化合物的结构及性质
Table 1 Structure and properties of some cannabinoid compounds
名称 | 结构示意图 | 化学式 | 沸点/℃ | 闪点/℃ | 折射率 |
---|---|---|---|---|---|
大麻二酚 | ![]() | C21H30O2 | 463.9 | 206.3 | 1.545 |
四氢大麻酚 | ![]() | C21H30O2 | 178.6 | 142.1 | 1.529 |
大麻萜酚 | ![]() | C21H32O2 | 470.4 | 207.2 | 1.536 |
大麻萜酚酸 | ![]() | C22H32O4 | 535.7 | 291.9 | 1.555 |
四氢大麻酚酸 | ![]() | C22H30O4 | 436.8 | 142.1 | 1.548 |
四氢大麻素 | ![]() | C19H26O2 | 360.0 | 137.6 | 1.536 |
名称 | 结构示意图 | 化学式 | 熔点/℃ | 沸点/℃ | 闪点/℃ | 折射率 |
---|---|---|---|---|---|---|
山柰酚 | ![]() | C15H10O6 | 276 | 582 | 226 | 1.785 |
芹菜素 | ![]() | C15H10O5 | 345 | 555 | 217 | 1.732 |
槲皮素 | ![]() | C15H10O7 | 316 | 642 | 248 | 1.823 |
木犀草素 | ![]() | C15H10O6 | 330 | 616 | 239 | 1.768 |
牡荆素 | ![]() | C21H20O10 | 256 | 767 | 273 | 1.743 |
表2 类黄酮类部分化合物的结构及性质
Table 2 Structure and properties of flavonoid moieties
名称 | 结构示意图 | 化学式 | 熔点/℃ | 沸点/℃ | 闪点/℃ | 折射率 |
---|---|---|---|---|---|---|
山柰酚 | ![]() | C15H10O6 | 276 | 582 | 226 | 1.785 |
芹菜素 | ![]() | C15H10O5 | 345 | 555 | 217 | 1.732 |
槲皮素 | ![]() | C15H10O7 | 316 | 642 | 248 | 1.823 |
木犀草素 | ![]() | C15H10O6 | 330 | 616 | 239 | 1.768 |
牡荆素 | ![]() | C21H20O10 | 256 | 767 | 273 | 1.743 |
1 | 李秋实,孟莹,陈士林.药用大麻种质资源分类与研究策略[J].中国中药杂志,2019,44(20):4309-4316. |
2 | RADWAN M M, CHANDRA S, GUL S, et al.. Cannabinoids, phenolics, terpenes and alkaloids of Cannabis [J/OL]. Molecules, 2021, 26(9): 2774[2022-09-15]. . |
3 | BAUTISTA J L, YU S, TIAN L. Flavonoids in Cannabis sativa: biosynthesis, bioactivities, and biotechnology[J]. ACS Omega, 2021, 6(8): 5119-5123. |
4 | SOMMANO S R, CHITTASUPHO C, RUKSIRIWANICH W, et al.. The Cannabis terpenes[J/OL]. Molecules, 2020, 25(24): 5792[2022-10-28]. . |
5 | BONINI S A, PREMOLI M, TAMBARO S, et al.. Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history[J]. J. Ethnopharmacol., 2018, 227: 300-315. |
6 | MARTINS A M, GOMES A L, VILAS B I, et al.. Cannabis-based products for the treatment of skin inflammatory diseases: a timely review[J/OL]. Pharmaceuticals, 2022, 15(2): 210[2022-10-07]. . |
7 | DARIS B, TANCER V M, KNEZ Z, et al.. Cannabinoids in cancer treatment: therapeutic potential and legislation[J]. Bosn. J. Basic Med. Sci., 2019, 19(1): 14-23. |
8 | 赵浩含,陈继康,熊和平.中国工业大麻种业创新发展策略研究[J].农业现代化研究,2020,41(5):765-771. |
9 | 曹焜,王晓楠,孙宇峰,等.中国工业大麻品种选育研究进展[J].中国麻业科学,2019,41(4):187-192. |
10 | 刘诗博,吴昊,洪焦,等.炎症-肿瘤转化在眼部相关疾病中的研究进展[J].生物技术进展,2020,10(3):234-241. |
11 | SUNG H, FERLAY J, SIEGEL R L, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin., 2021, 71(3): 209-249. |
12 | SATIJA A, AHMED S M, GUPTA R, et al.. Breast cancer pain management-a review of current & novel therapies[J]. Indian J. Med. Res., 2014, 139(2): 216-225. |
13 | SULTAN A S, MARIE M A, SHEWEITA S A. Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines[J]. Breast, 2018, 41: 34-41. |
14 | SCHOEMAN R, BEUKES N, FROST C. Cannabinoid combination induces cytoplasmic vacuolation in MCF-7 breast cancer cells[J/OL]. Molecules, 2020, 25(20): 4682[2021-11-23]. . |
15 | AMARAL C, TROUILLE F M, ALMEIDA C F, et al.. Unveiling the mechanism of action behind the anti-cancer properties of cannabinoids in ER+ breast cancer cells: impact on aromatase and steroid receptors[J/OL]. J. Steroid Biochem. Mol. Biol., 2021, 210: 105876[2022-08-10]. . |
16 | STANFORD J L, FENG Z, HAMILTON A S, et al.. Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the prostate cancer outcomes study[J]. JAMA, 2000, 283(3): 354-360. |
17 | CHAI E Z, SIVEEN K S, SHANMUGAM M K, et al.. Analysis of the intricate relationship between chronic inflammation and cancer[J]. Biochem. J., 2015, 468(1): 1-15. |
18 | SHARMA M, HUDSON J B, ADOMAT H, et al.. In vitro anticancer activity of plant-derived Cannabidiol on prostate cancer cell lines[J]. Pharmacol. Pharm., 2014, 5(8): 806-820. |
19 | DE-PETROCELLIS L, LIGRESTI A, SCHIANO M A, et al.. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms[J]. Br. J. Pharmacol., 2013, 168(1): 79-102. |
20 | RENI M, MAZZA E, ZANON S, et al.. Central nervous system gliomas[J]. Crit. Rev. Oncol. Hemat., 2017, 113: 213-234. |
21 | NABISSI M, MORELLI M B, AMANTINI C, et al.. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner[J]. Int. J. Cancer, 2015, 137(8): 1855-1869. |
22 | SOROCEANU L, SINGER E, DIGHE P, et al.. Cannabidiol inhibits RAD51 and sensitizes glioblastoma to temozolomide in multiple orthotopic tumor models[J/OL]. Neurooncol. Adv., 2022, 4(1): c19[2022-08-18]. . |
23 | SINGER E, JUDKINS J, SALOMONIS N, et al.. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma[J/OL]. Cell Death Dis., 2015, 6: e1601[2022-08-17]. . |
24 | KOSGODAGE U S, UYSAL-ONGANER P, MACLATCHY A, et al.. Cannabidiol affects extracellular vesicle release, miR21 and miR126, and reduces prohibitin protein in glioblastoma multiforme cells[J]. Transl. Oncol., 2019, 12(3): 513-522. |
25 | SANDRU A, VOINEA S, PANAITESCU E, et al.. Survival rates of patients with metastatic malignant melanoma[J]. J. Med. Life, 2014, 7(4): 572-576. |
26 | ARMSTRONG J L, HILL D S, MCKEE C S, et al.. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death[J]. J. Invest. Dermatol., 2015, 135(6): 1629-1637. |
27 | GLODDE N, JAKOBS M, BALD T, et al.. Differential role of cannabinoids in the pathogenesis of skin cancer[J]. Life Sci., 2015, 138: 35-40. |
28 | SIMMERMAN E, QIN X, YU J C, et al.. Cannabinoids as a potential new and novel treatment for melanoma: a pilot study in a murine model[J]. J. Surg. Res., 2019, 235: 210-215. |
29 | HENSHAW F R, DEWSBURY L S, LIM C K, et al.. The effects of Cannabinoids on pro- and anti-inflammatory cytokines: a systematic review of in vivo studies[J]. Cannabis Cannabinoid Res., 2021, 6(3): 177-195. |
30 | ALETAHA D, SMOLEN J S. Diagnosis and management of rheumatoid arthritis: a review[J]. JAMA, 2018, 320(13): 1360-1372. |
31 | HAMMELL D C, ZHANG L P, MA F, et al.. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis[J]. Eur. J. Pain, 2016, 20(6): 936-948. |
32 | LOWIN T, TINGTING R, ZURMAHR J, et al.. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts[J/OL]. Cell Death Dis., 2020, 11(8): 714[2022-04-12]. . |
33 | LOBENTANZ I S, ASENBAUM S, VASS K, et al.. Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality[J]. Acta Neurol. Scand., 2004, 110(1): 6-13. |
34 | DOBSON R, GIOVANNONI G. Multiple sclerosis-a review[J]. Eur. J. Neurol., 2019, 26(1): 27-40. |
35 | AL-GHEZI Z Z, MIRANDA K, NAGARKATTI M, et al.. Combination of Cannabinoids, delta9-tetrahydrocannabinol and Cannabidiol, ameliorates experimental multiple sclerosis by suppressing neuroinflammation through regulation of miRNA-mediated signaling pathways[J/OL]. Front. Immunol., 2019, 10: 1921[2022-05-23]. . |
36 | ELLIOTT D M, SINGH N, NAGARKATTI M, et al.. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells[J/OL]. Front. Immunol., 2018, 9: 1782[2022-05-25]. . |
37 | FELIU A, MORENO-MARTET M, MECHA M, et al.. A sativex(R)-like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis[J]. Br. J. Pharmacol., 2015, 172(14): 3579-3595. |
38 | SAMUELS D V, ROSENTHAL R, LIN R, et al.. Acne vulgaris and risk of depression and anxiety: a meta-analytic review[J]. J. Am. Acad. Dermatol., 2020, 83(2): 532-541. |
39 | OLÁH A, TÓTH B I, BORBÍRÓ I, et al.. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes[J]. J. Clin. Invest., 2014, 124(9): 3713-3724. |
40 | OLÁH A, MARKOVICS A, SZABÓ-PAPP J, et al.. Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment[J]. Exp. Dermatol., 2016, 25(9): 701-707. |
41 | GAFFAL E, CRON M, GLODDE N, et al.. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors[J]. Allergy, 2013, 68(8): 994-1000. |
42 | BAUMJOHANN D, ANSEL K M. MicroRNA-mediated regulation of T helper cell differentiation and plasticity[J]. Nat. Rev. Immunol., 2013, 13(9): 666-678. |
43 | SIDO J M, JACKSON A R, NAGARKATTI P S, et al.. Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation[J]. J. Mol. Med., 2016, 94(9): 1039-1051. |
44 | PETROSINO S, VERDE R, VAIA M, et al.. Anti-inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis[J]. J. Pharmacol. Exp. Ther., 2018, 365(3): 652-663. |
45 | COTO-SEGURA P, EIRIS-SALVADO N, GONZALEZ-LARA L, et al.. Psoriasis, psoriatic arthritis and type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Br. J. Dermatol., 2013, 169(4): 783-793. |
46 | VINCENZI C, TOSTI A. Efficacy and tolerability of a shampoo containing broad-spectrum cannabidiol in the treatment of scalp inflammation in patients with mild to moderate scalp psoriasis or seborrheic dermatitis[J]. Skin Appendage Disord., 2020, 6(6): 355-361. |
47 | LEKHRAM C, GEORGE A. Method to treat psoriasis: US2019060250(A1)[P]. 2019-02-28. |
48 | MONEY S, GARBER B. Management of cancer pain[J]. Cur. Emerg. Hospital Med. Rep., 2018, 6(4): 141-146. |
49 | ZHANG J M, AN J. Cytokines, inflammation, and pain[J]. Int. Anesthesio.l Clin., 2007, 45(2): 27-37. |
50 | STAROWICZ K, FINN D P. Chapter thirteen-cannabinoids and pain: sites and mechanisms of action[M]//KENDALL D, ALEXANDER S P H. Advances in pharmacology. Massachusetts: Academic Press, 2017: 437-475. |
51 | ABRAHAM A D, LEUNG E J Y, WONG B A, et al.. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain[J]. Neuropsychopharmacol. (New York), 2020, 45(7): 1105-1114. |
52 | ELLIS L D, BERRUE F, MORASH M, et al.. Comparison of cannabinoids with known analgesics using a novel high throughput zebrafish larval model of nociception[J]. Behav. Brain Res., 2018, 337: 151-159. |
53 | WILSEY B L, DEUTSCH R, SAMARA E, et al.. A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis[J]. J. Pain Res., 2016, 9: 587-598. |
54 | FITZCHARLES M A, BAERWALD C, ABLIN J, et al.. Efficacy, tolerability and safety of cannabinoids in chronic pain associated with rheumatic diseases (fibromyalgia syndrome, back pain, osteoarthritis, rheumatoid arthritis): a systematic review of randomized controlled trials[J]. Schmerz, 2016, 30(1): 47-61. |
55 | 严江涛.大麻二酚抗氧化活性研究及不同环境差异下转录组分析[D]. 北京: 中国农业科学院,2020. |
56 | CASARES L, GARCÍA V, GARRIDO-RODRÍGUEZ M, et al.. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1[J/OL]. Redox Biol., 2020, 28: 101321[2021-10-12]. . |
57 | SONG P, LIU Y, YU X, et al.. Prevalence of epilepsy in China between 1990 and 2015: a systematic review and meta-analysis[J/OL]. J. Glob. Health, 2017, 7(2): 20706[2022-08-01]. . |
58 | ROSENBERG E C, TSIEN R W, WHALLEY B J, et al.. Cannabinoids and epilepsy[J]. Neurotherapeutics, 2015, 12(4): 747-768. |
59 | HOSSEINZADEH M, NIKSERESHT S, KHODAGHOLI F, et al.. Cannabidiol post-treatment alleviates rat epileptic-related behaviors and activates hippocampal cell autophagy pathway along with antioxidant defense in chronic phase of pilocarpine-induced seizure[J]. J. Mol. Neurosci., 2016, 58(4): 432-440. |
60 | PATRA P H, BARKER-HALISKI M, WHITE H S, et al.. Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models[J]. Epilepsia, 2019, 60(2): 303-314. |
61 | HILL A J, MERCIER M S, HILL T D, et al.. Cannabidivarin is anticonvulsant in mouse and rat[J]. Br. J. Pharmacol., 2012, 167(8): 1629-1642. |
62 | HUIZENGA M N, SEPULVEDA-RODRIGUEZ A, FORCELLI P A. Preclinical safety and efficacy of cannabidivarin for early life seizures[J]. Neuropharmacology, 2019, 148: 189-198. |
63 | MORANO A, FANELLA M, ALBINI M, et al.. Cannabinoids in the treatment of epilepsy: current status and future prospects[J]. Neuropsychiatr. Dis. Treat, 2020, 16: 381-396. |
64 | DIAS M C, PINTO D, SILVA A. Plant flavonoids: chemical characteristics and biological activity[J/OL]. Molecules, 2021, 26(17): 5377[2022-09-15]. . |
65 | KUMAR P, MAHATO D K, KAMLE M, et al.. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: an overview[J]. Phytother. Res., 2021, 35(11): 6010-6029. |
66 | 田爱莹.汉麻叶活性成分的提取分离及其抗氧化活性研究[D].天津: 天津科技大学,2015. |
67 | 刘毅.工业大麻叶的成分分析及生物活性初步研究[D].北京: 中国农业科学院,2020. |
68 | ZHU L, XUE L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells[J]. Oncol. Res., 2019, 27(6): 629-634. |
69 | RIAHI-CHEBBI I, SOUID S, OTHMAN H, et al.. The phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells[J/OL]. Sci. Rep., 2019, 9(1): 195[2022-09-20]. . |
70 | LEE J, KIM J H. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro[J/OL]. PLoS ONE, 2016, 11(5): e155264[2022-09-22]. . |
71 | TONG J, SHEN Y, ZHANG Z, et al.. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-kB/snail signaling pathway[J/OL]. Biosci. Rep., 2019, 39(5): BSR20190452[2022-09-25]. . |
72 | NELSON N, SZEKERES K, ICLOZAN C, et al.. Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer[J/OL]. PLoS ONE, 2017, 12(2): e170197[2022-09-28]. . |
73 | GILARDINI MONTANI M S, CECERE N, GRANATO M, et al.. Mutant p53, stabilized by its interplay with HSP90, activates a positive feed-back loop between NRF2 and p62 that induces chemo-resistance to apigenin in pancreatic cancer cells[J/OL]. Cancers, 2019, 11(5): 703[2022-09-28]. . |
74 | KOYAMA Y, BRENNER D A. Liver inflammation and fibrosis[J]. J. Clin. Invest., 2017, 127(1): 55-64. |
75 | WANG M, SUN J, JIANG Z, et al.. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice[J]. Am. J. Chin. Med., 2015, 43(2): 241-254. |
76 | ZHOU B, JIANG Z, LI X, et al.. Kaempferol's protective effect on ethanol-induced mouse primary hepatocytes injury involved in the synchronous inhibition of SP1, Hsp70 and CYP2E1[J]. Am. J. Chin. Med., 2018, 46(5): 1093-1110. |
77 | TOMKO A M, WHYNOT E G, ELLIS L D, et al.. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in Cannabis[J/OL]. Cancers (Basel), 2020, 12(7): 1985[2022-10-30]. . |
78 | SOBRAL M V, XAVIER A L, LIMA T C, et al.. Antitumor activity of monoterpenes found in essential oils[J/OL]. Scientif.World J., 2014, 2014: 953451[2022-10-30]. . |
79 | YU X, LIN H, WANG Y, et al.. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer[J]. Onco. Targets Ther., 2018, 11: 1833-1847. |
80 | HAFIDH R R, HUSSEIN S Z, MALALLAH M Q, et al.. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent[J]. Curr. Cancer Drug Tar., 2018, 18(8): 807-815. |
81 | LUCAS C J, GALETTIS P, SCHNEIDER J. The pharmacokinetics and the pharmacodynamics of cannabinoids[J]. Br. J. Clin. Pharmacol., 2018, 84(11): 2477-2482. |
82 | LIU Z, MARTIN J H. Gaps in predicting clinical doses for cannabinoids therapy: overview of issues for pharmacokinetics and pharmacodynamics modelling[J]. Br. J. Clin. Pharmacol., 2018, 84(11): 2483-2487. |
83 | JHAWAR N, SCHOENBERG E, WANG J V, et al.. The growing trend of cannabidiol in skincare products[J]. Clin.Dermatol., 2019, 37(3): 279-281. |
84 | KHALSA J H, BUNT G, BLUM K, et al.. Review: cannabinoids as medicinals[J]. Curr. Addict. Rep., 2022, 9(4): 630-646. |
[1] | 孙志康,王娜,孟颖颖,林浩,牛丽芳. 蒺藜苜蓿糖基转移酶基因SMALL AND EMERALD1的克隆和功能研究[J]. 生物技术进展, 2021, 11(2): 182-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部