生物技术进展 ›› 2023, Vol. 13 ›› Issue (1): 46-54.DOI: 10.19586/j.2095-2341.2022.0160
苗瑞菊1,2(), 丁尊丹2, 田健2, 张红兵1(
), 关菲菲2(
)
收稿日期:
2022-09-20
接受日期:
2022-10-09
出版日期:
2023-01-25
发布日期:
2023-02-07
通讯作者:
张红兵,关菲菲
作者简介:
苗瑞菊E-mail: 1225718255@qq.com
基金资助:
Ruiju MIAO1,2(), Zundan DING2, Jian TIAN2, Hongbing ZHANG1(
), Feifei GUAN2(
)
Received:
2022-09-20
Accepted:
2022-10-09
Online:
2023-01-25
Published:
2023-02-07
Contact:
Hongbing ZHANG,Feifei GUAN
摘要:
塑料由于其耐久性和耐降解性造成的环境污染日趋严重,而塑料废弃物的处理回收方法存在着缺陷。聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)是应用最广泛的塑料类型之一,但在自然条件下很难被降解。近年来,虽然多种具有PET降解活性的酶被发现,但这些酶的催化活性和热稳定性难以支撑实际工业所需,因此提高PET水解酶的降解能力已成为研究热点而备受关注。脂肪酶、角质酶、IsPETase和IsMHETase是目前研究最为广泛的PET水解酶,就这几种酶的结构、活性特征进行了总结,重点阐述了传统蛋白质工程和人工智能分子设计在增强PET水解酶应用性能方面的研究进展。期望塑料降解酶可以进一步发展优化,为循环塑料经济做出有价值的贡献。
中图分类号:
苗瑞菊, 丁尊丹, 田健, 张红兵, 关菲菲. PET水解酶传统与智能分子设计研究进展[J]. 生物技术进展, 2023, 13(1): 46-54.
Ruiju MIAO, Zundan DING, Jian TIAN, Hongbing ZHANG, Feifei GUAN. Research Advances on Traditional and Intelligent Molecular Design of PET Hydrolases[J]. Current Biotechnology, 2023, 13(1): 46-54.
1 | THOMPSON R C, MOORE C J, VOM S F, et al.. Plastics, the environment and human health: current consensus and future trends[J]. Philos. Trans. R. Soc. Lond B Biol. Sci., 2009, 364(1526): 2153-2166. |
2 | MAGALHAES R P, CUNHA J M, SOUSA S F. Perspectives on the role of enzymatic biocatalysis for the degradation of plastic PET[J/OL]. Int. J. Mol. Sci., 2021, 22(20): 11257[2022-08-05]. . |
3 | ALLEN S, ALLEN D, PHOENIX V R, et al.. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nat. Geosci., 2019, 12(5): 339-344. |
4 | THOMPSON R C, OLSEN Y, MITCHELL R P, et al.. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838-838. |
5 | 刘鑫蓓, 董旭晟, 解志红, 等. 土壤中微塑料的生态效应与生物降解[J]. 土壤学报, 2022, 59(2): 349-363. |
6 | GAO R, PAN H, LIAN J. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases[J/OL]. Enzyme Microb. Technol., 2021, 150: 109868[2022-08-10]. . |
7 | GEWERT B, PLASSMANN M M, MACLEOD M. Pathways for degradation of plastic polymers floating in the marine environment[J]. Environ. Sci. Proc. Impacts, 2015, 17(9): 1513-1521. |
8 | LEBRETON L, SLAT B, FERRARI F, et al.. Evidence that the great pacific garbage patch is rapidly accumulating plastic[J/OL]. Sci. Rep., 2018, 8(1): 4666[2022-08-10]. . |
9 | LI C T, ZHUANG H K, HSIEH L T, et al.. PAH emission from the incineration of three plastic wastes[J]. Environ. Int., 2001, 27(1): 61-67. |
10 | RAGAERT K, DELVA L, VAN GEEM K. Mechanical and chemical recycling of solid plastic waste[J]. Waste Manag., 2017, 69: 24-58. |
11 | GRIGORE M. Methods of recycling, properties and applications of recycled thermoplastic polymers[J/OL]. Recycling, 2017, 2(4): 24[2022-08-10]. . |
12 | SCALENGHE R. Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options[J/OL]. Heliyon, 2018, 4(12): e941[2022-08-10]. . |
13 | PARK S H, KIM S H. Poly (ethylene terephthalate) recycling for high value added textiles[J/OL]. Fashion Textiles, 2014, 1(1): 1[2022-08-11]. . |
14 | AL-SABAGH A M, YEHIA F Z, ESHAQ G, et al.. Greener routes for recycling of polyethylene terephthalate[J]. Egyptian J. Petrol., 2016, 25(1): 53-64. |
15 | SCHYNS Z, SHAVER M P. Mechanical recycling of packaging plastics: a review[J/OL]. Macromol. Rapid Commun., 2021, 42(3): e2000415[2022-08-11]. . |
16 | WEBB H, ARNOTT J, CRAWFORD R, et al.. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)[J]. Polymers, 2013, 5(1): 1-18. |
17 | KAUSHAL J, KHATRI M, ARYA S K. Recent insight into enzymatic degradation of plastics prevalent in the environment: a mini - review[J/OL]. Cleaner Engin. Technol., 2021, 2: 100083[2022-08-15]. . |
18 | ROSE R S, RICHARDSON K H, LATVANEN E J, et al.. Microbial degradation of plastic in aqueous solutions demonstrated by CO2 evolution and quantification[J/OL]. Int. J. Mol. Sci., 2020, 21(4): 1176 [2022-08-15]. . |
19 | AMOBONYE A, BHAGWAT P, SINGH S, et al.. Plastic biodegradation: frontline microbes and their enzymes[J/OL]. Sci. Total Environ., 2021, 759: 143536[2022-08-15]. . |
20 | 张彤, 刘盼, 王倩, 等. 降解石油基塑料的微生物及微生物菌群[J]. 生物工程学报, 2021, 37(10): 3520-3534. |
21 | MÜLLER R, SCHRADER H, PROFE J, et al. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca [J]. Macromol. Rapid Comm., 2005, 26(17): 1400-1405. |
22 | CARNIEL A, VALONI É, NICOMEDES J, et al.. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Proc. Biochem., 2017, 59: 84-90. |
23 | SULAIMAN S, YAMATO S, KANAYA E, et al.. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Appl. Environ. Microbiol., 2012, 78(5): 1556-1562. |
24 | ROTH C, WEI R, OESER T, et al.. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca [J]. Appl. Microbiol. Biotechnol., 2014, 98(18): 7815-7823. |
25 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al.. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
26 | SALVADOR M, ABDULMUTALIB U, GONZALEZ J, et al. Microbial genes for a circular and sustainable bio-PET economy[J/OL]. Genes (Basel), 2019, 10(5): 373 [2022-08-21]. . |
27 | DISSANAYAKE L, JAYAKODY L N. Engineering microbes to bio-upcycle polyethylene terephthalate[J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 656465 [2022-08-21]. . |
28 | RORRER N A, NICHOLSON S, CARPENTER A, et al.. Combining reclaimed PET with bio-based monomers enables plastics upcycling[J]. Joule, 2019, 3(4): 1006-1027. |
29 | URBANEK A K, RYMOWICZ W, MIRONCZUK A M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats[J]. Appl. Microbiol. Biotechnol., 2018, 102(18): 7669-7678. |
30 | 蒋迎迎, 曲戈, 孙周通. 机器学习助力酶定向进化[J]. 生物学杂志, 2020, 37(4): 1-11. |
31 | CHANDRA P, ENESPA, SINGH R, et al.. Microbial lipases and their industrial applications: a comprehensive review[J/OL]. Microb. Cell Fact., 2020, 19(1): 169 [2022-08-22]. . |
32 | STAUCH B, FISHER S J, CIANCI M. Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation[J]. J. Lipid Res., 2015, 56(12): 2348-2358. |
33 | EBERL A, HEUMANN S, BRUCKNER T, et al.. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules[J]. J. Biotechnol., 2009, 143(3): 207-212. |
34 | KAWAI F, KAWABATA T, ODA M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Appl. Microbiol. Biotechnol., 2019, 103(11): 4253-4268. |
35 | CARVALHO C M, AIRES-BARROS M R, CABRAL J M. Cutinase: from molecular level to bioprocess development[J]. Biotechnol. Bioeng., 1999, 66(1): 17-34. |
36 | ZIMMERMANN W, BILLIG S. Enzymes for the biofunctionalization of poly(ethylene terephthalate)[J]. Adv. Biochem. Eng. Biotechnol., 2011, 125: 97-120. |
37 | NICOLAS A, EGMOND M, VERRIPS C T, et al. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state[J]. Biochemistry, 1996, 35(2): 398-410. |
38 | TOURNIER V, TOPHAM C M, GILLES A, et al.. An engineered PET depolymerase to break down and recycle plastic bottles[J].Nature, 2020, 580(7802): 216-219. |
39 | JOO S, CHO I J, SEO H, et al.. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J/OL]. Nat. Commun., 2018, 9(1): 382[2022-08-25]. . |
40 | AUSTIN H P, ALLEN M D, DONOHOE B S, et al.. Characterization and engineering of a plastic-degrading aromatic polyesterase[J].Proc. Natl. Acad. Sci. USA, 2018, 115(19): E4350-E4357. |
41 | HAN X, LIU W, HUANG J W, et al.. Structural insight into catalytic mechanism of PET hydrolase[J/OL]. Nat. Commun., 2017, 8(1): 2106[2022-08-25]. . |
42 | PALM G J, REISKY L, BOTTCHER D, et al.. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate[J/OL]. Nat. Commun., 2019, 10(1): 1717[2022-08-25]. . |
43 | SAGONG H, SEO H, KIM T, et al.. Decomposition of the PET film by MHETase using exo-PETase function[J]. Acs Catal., 2020, 10(8): 4805-4812. |
44 | KNOTT B C, ERICKSON E, ALLEN M D, et al.. Characterization and engineering of a two-enzyme system for plastics depolymerization[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(41): 25476-25485. |
45 | KIKKAWA Y, FUJITA M, ABE H, et al.. Effect of water on the surface molecular mobility of poly(lactide) thin films: an atomic force microscopy study[J]. Biomacromolecules, 2004, 5(4): 1187-1193. |
46 | KAWAI F, ODA M, TAMASHIRO T, et al.. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Appl. Microbiol. Biotechnol., 2014, 98(24): 10053-10064. |
47 | ODA M, YAMAGAMI Y, INABA S, et al.. Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity[J]. Appl. Microbiol. Biotechnol., 2018, 102(23): 10067-10077. |
48 | ARAÚJO R, SILVA C, O'NEILL A, et al.. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6, 6 fibers[J]. J. Biotechnol., 2007, 128(4): 849-857. |
49 | SILVA C, DA S, SILVA N, et al.. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnol. J., 2011, 6(10): 1230-1239. |
50 | KAWABATA T, ODA M, KAWAI F. Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate[J]. J. Biosci. Bioeng., 2017, 124(1): 28-35. |
51 | WEI R, OESER T, SCHMIDT J, et al.. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition[J]. Biotechnol. Bioeng., 2016, 113(8): 1658-1665. |
52 | CHEN C, HAN X, LI X, et al.. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis[J]. Nat. Catal., 2021, 4(5): 425-430. |
53 | FURUKAWA M, KAWAKAMI N, ODA K, et al.. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants[J]. ChemSusChem, 2018, 11(23): 4018-4025. |
54 | MA Y, YAO M, LI B, et al.. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering[J]. Engineering, 2018, 4(6): 888-893. |
55 | LIU B, HE L, WANG L, et al.. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis [J]. Chembiochem, 2018, 19(14): 1471-1475. |
56 | SON H F, CHO I J, JOO S, et al.. Rational protein engineering of thermo-Stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. Acs Catal., 2019, 9(4): 3519-3526. |
57 | NUMOTO N, KAMIYA N, BEKKER G, et al.. Structural dynamics of the PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 in substrate-bound states elucidates the Ca2+-driven catalytic cycle[J]. Biochemistry, 2018, 57(36): 5289-5300. |
58 | MIYAKAWA T, MIZUSHIMA H, OHTSUKA J, et al.. Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190[J]. Appl. Microbiol. Biotechnol., 2015, 99(10): 4297-4307. |
59 | THEN J, WEI R, OESER T, et al.. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate[J]. FEBS Open Biol, 2016, 6(5): 425-432. |
60 | HERRERO A E, RIBITSCH D, DELLACHER A, et al.. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis[J]. Biotechnol. Bioeng., 2013, 110(10): 2581-2590. |
61 | BARTH M, OESER T, WEI R, et al.. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca [J]. Biochem. Eng. J., 2015, 93: 222-228. |
62 | BARTH M, WEI R, OESER T, et al.. Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor[J]. J. Membrane Sci., 2015, 494: 182-187. |
63 | YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering[J]. Nat. Methods, 2019, 16(8): 687-694. |
64 | ALLEY E C, KHIMULYA G, BISWAS S, et al.. Unified rational protein engineering with sequence-based deep representation learning[J]. Nat. Methods, 2019, 16(12): 1315-1322. |
65 | WU Z, KAN S B J, LEWIS R D, et al.. Machine learning-assisted directed protein evolution with combinatorial libraries[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(18): 8852-8858. |
66 | JANG W D, KIM G B, KIM Y, et al.. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering[J]. Curr. Opin. Biotechnol., 2022, 73: 101-107. |
67 | BU Y, CUI Y, PENG Y, et al.. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design[J]. Appl. Microbiol. Biotechnol., 2018, 102(8): 3675-3685. |
68 | MU Q, CUI Y, TIAN Y, et al.. Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design[J]. Int. J. Biol. Macromol., 2019, 136: 1060-1068. |
69 | CUI Y, CHEN Y, LIU X, et al.. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. Acs Catal., 2021, 11(3): 1340-1350. |
70 | LU H, DIAZ D J, CZARNECKI N J, et al.. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667. |
71 | MENG X, YANG L, LIU H, et al.. Protein engineering of stable IsPETase for PET plastic degradation by premuse[J]. Int. J. Biol. Macromol., 2021, 180: 667-676. |
72 | GOLDENZWEIG A, GOLDSMITH M, HILL S E, et al.. Automated structure- and sequence-based design of proteins for high bacterial expression and stability[J]. Mol. Cell, 2016, 63(2): 337-346. |
73 | RENNISON A, WINTHER J R, VARRONE C. Rational protein engineering to increase the activity and stability of IsPETase using the PROSS algorithm[J/OL]. Polymers, 2021, 13(22): 3884[2022-09-15]. . |
74 | DANSO D, SCHMEISSER C, CHOW J, et al.. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J/OL]. Appl. Environ. Microbiol., 2018, 84(8): e02773-17 [2022-09-15]. . |
75 | ZHANG H, PEREZ-GARCIA P, DIERKES R F, et al.. The bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity[J/OL]. Front. Microbiol., 2021, 12: 803896 [2022-09-15]. . |
[1] | 辛志奇, 赵航, 汪海, 路铁刚. 基于深度学习的作物基因组学和遗传改良[J]. 生物技术进展, 2021, 11(4): 483-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部