1 |
DETSYK O, SOLOMCHAK D, BUGRO V. Patient pathways as a tool of improvement in management of urgent and scheduled health care for kidney stone disease[J]. Wiad. Lek., 2019, 72(5): 2128-2134.
|
2 |
EVAN A P, WORCESTER E M, COE F L, et al.. Mechanisms of human kidney stone formation[J]. Urolithiasis, 2015, 43: 19-32.
|
3 |
张建文,徐长志,张颖,等.草酸钙结石晶体对人近曲肾小管上皮细胞蛋白质表达谱的影响[J].中华腔镜泌尿外科杂志,2019,13(04):225-229.
|
4 |
GLEBERZON J S, LIAO Y Y, MITLER S, et al.. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study[J]. Urolithiasis, 2019, 47(7): 425-440.
|
5 |
GUARNERI C, BEVELACQUA V, POLESEL J, et al.. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma[J]. Oncol. Rep., 2017, 37(2): 737-746.
|
6 |
HAGHI A, AZIMI H, RAHIMI R A. Comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer[J]. J. Gastroin. Cancer, 2017, 48(4): 314-320.
|
7 |
LAI Y, LIANG X, ZHONG F, et al.. Allicin attenuates calcium oxalate crystal deposition in the rat kidney by regulating gap junction function[J]. J. Cell. Physiol., 2019, 234(6): 9640-9651.
|
8 |
YANG A, GHO H, FU M, et al.. Inhibitive effects of huashi pill on formation of renal stones by modulating urine biochemical indexes and osteopontin in renal stone rat models[J]. Med. Sci. Monit., 2019, 25(3): 8335-8344.
|
9 |
刘淼,谷江,张永春,等.乌梅提取物对纳米细菌致大鼠肾结石形成的影响及机制探讨[J].山东医药,2017,57(14):14-17.
|
10 |
HE X Z, OU T W, CUI X, et al.. Analysis of the safety and efficacy of combined extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy for the treatment of complex renal calculus[J]. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(6): 2567-2571.
|
11 |
CHERNG J H, HSU Y J, LIU C C, et al.. Activities of Ca-related ion channels during the formation of kidney stones in an infection-induced urolithiasis rat model[J]. Am. J. Physiol. Renal. Physiol., 2019, 317(4): F1342-F1349.
|
12 |
SCHEPERS M S, BALLEGOOIJEN E S, BANGMA C H, et al.. Crystals cause acute necrotic cell death in renal proximal tubule cells, but not in collecting tubule cells[J]. Kidney. Int., 2005, 68(4): 1543-1553.
|
13 |
DORRIGIV M, ZAREIYAN A, HOSSEINZADEH H. Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: a comprehensive update review[J]. Phytother. Res., 2020, 34(8): 1770-1797.
|
14 |
ORABI S H, ABD E D, HASSAN A, et al.. Allicin modulates diclofenac sodium induced hepatonephro toxicity in rats via reducing oxidative stress and caspase 3 protein expression[J]. Environ. Toxicol. Pharmacol., 2020, 74(5): 1033-1046.
|
15 |
GARCIA T E, ARELLANO B A, SABCHEZ R O, et al.. The beneficial effects of allicin in chronic kidney disease are comparable to losartan[J]. Int. J. Mol. Sci., 2017, 18(9): 1980-1994.
|
16 |
HUANG H, JIANG Y, MAO G, et al.. Protective effects of allicin on streptozotocin-induced diabetic nephropathy in rats[J]. J. Sci. Food. Agric., 2017, 97(4): 1359-1366.
|
17 |
ANAN G, YONEYAMA T, NORO D, et al.. The impact of glycosylation of osteopontin on urinary stone formation[J]. Int. J. Mol. Sci., 2019, 21(1): 53-62.
|
18 |
TSUJI H, SHIMIZU N, NOZAWA M, et al.. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition[J]. Urolithiasis, 2014, 42(3): 195-202.
|
19 |
SUN L, ZOU L X, WANG J, et al.. Mucin 4 gene silencing reduces oxidative stress and calcium oxalate crystal formation in renal tubular epithelial cells through the extracellular signal-regulated kinase signaling pathway in nephrolithiasis rat model[J]. Kidney Blood Press Res., 2018, 43(5): 820-835.
|
20 |
DING F, WANG J, ZHU G, et al.. Osteopontin stimulates matrix metalloproteinase expression through the nuclear factor-κB signaling pathway in rat temporomandibular joint and condylar chondrocytes[J]. Am. J. Transl. Res., 2017, 9(2): 316-329.
|
21 |
DONG M, YU X X, CHEN W F, et al.. Osteopontin promotes bone destruction in periapical periodontitis by activating the NF-κB pathway[J]. Cell. Physiol. Biochem., 2018, 49(2): 884-898.
|