生物技术进展 ›› 2024, Vol. 14 ›› Issue (3): 377-387.DOI: 10.19586/j.2095-2341.2024.0026
• 进展评述 • 上一篇
收稿日期:
2024-02-23
接受日期:
2024-03-21
出版日期:
2024-05-25
发布日期:
2024-06-18
通讯作者:
徐明明
作者简介:
杜丽萍 E-mail: 15774608960@163.com;
Liping DU(), Mingming XU(
), Yandong GUAN, Shasha ZHOU, Jie ZHANG
Received:
2024-02-23
Accepted:
2024-03-21
Online:
2024-05-25
Published:
2024-06-18
Contact:
Mingming XU
摘要:
病毒滴度测定是生物制药行业重要的分析方法,广泛应用于病毒类生物制品的开发和生产、病毒清除灭活工艺验证、外源病毒检测等领域,以确保病毒类生物制剂的活性和有效性,以及生物制品的病毒安全性。因此,建立快速、简单且准确的病毒滴定检测方法尤为重要。总结了检测病毒滴度的传统方法、新兴以及改良方法的特点、原理及具体应用,并比较了各自的优缺点。一些新兴方法,如微滴式数字PCR、病毒定量毛细管电泳、化学发光ISH-PNA测定、激光力细胞学等改进了传统方法耗时耗力、重复性差、准确性低、结果主观性大的缺点,达到了快速、灵敏、自动化程度高、精密度高、结果更加稳健且客观的优点,但部分新方法仪器昂贵或者未广泛使用,需要根据实验目的选择合适的病毒滴定方法。
中图分类号:
杜丽萍, 徐明明, 官艳东, 周沙沙, 张杰. 病毒滴度测定的新兴及改良方法进展[J]. 生物技术进展, 2024, 14(3): 377-387.
Liping DU, Mingming XU, Yandong GUAN, Shasha ZHOU, Jie ZHANG. Advances in Emerging and Improved Methods for Detecting Viral Titers[J]. Current Biotechnology, 2024, 14(3): 377-387.
方法分类 | 方法名称 | 时间成本 | 费用成本 | 使用仪器 | 适用病毒种类 | 优点 | 缺点 | 可操作性 |
---|---|---|---|---|---|---|---|---|
病毒感染水平 | PFU法 | 天~周 | * | 肉眼或低倍显微镜 | 产生CPE的病毒 | 操作简单 | 重复性差,费时费力,自动化程度差,受主观影响性大,需要病毒在培养时有复制周期 | 操作简单,工作量大,需要有经验的检测人员 |
TCID50法 | 天~周 | * | 普通显微镜 | 产生CPE的病毒 | 操作简单 | 耗时耗力,需要重复多次 | 操作简单,工作量大,需要有经验的检测人员 | |
荧光灶试验 | 天 | ** | 荧光显微镜 | 需要特异性病毒抗体 | 重复性高、降低主观性 | 需要特异性病毒抗体 | 操作较简单,通过预实验确定特异性抗体使用浓度,熟练操作荧光显微镜 | |
IPMA法 | 天 | ** | 荧光显微镜 | 需要特异性病毒抗体 | 高灵敏度、重复性和特异性好 | 结果受个别主观因素影响,且病毒含量过低时无法产生特定的颜色反应,样品阳性检出率略低 | 操作简单,方法成熟,实验所需试剂和耗材成本低 | |
病毒蛋白水平 | ELISA | 小时~天 | ** | 酶标仪 | 广泛应用 | 省时 | 严格性低,测量的病毒元素不一定与病毒颗粒有关 | 操作较简单,通过预实验确定相关实验细节 |
病毒定量毛细管电泳 | 小时~天 | ** | 毛细管 | 广泛应用 | 样品使用量小、分辨率高、操作简单 | 主要应用在病毒类疫苗的质量控制,不是严格意义上的病毒滴定 | 操作简单 | |
病毒核酸水平 | qPCR | 小时 | * | qPCR仪 | 广泛应用 | 快速、灵敏、稳定 | 不能确保仅对感染颗粒进行定量 | 操作简单,考验操作人员精细程度 |
ddPCR | 小时 | ** | 微液滴数字PCR仪 | 广泛应用 | 准确度和精密度高,无需标准曲线或特殊的样品制备,可对目标基因实现绝对定量 | 通量限制,花费大 | 操作简单,但受通量限制,工作量较大 | |
产物增强逆转录酶测定 | 小时~天 | ** | qPCR仪 | 主要应用于逆转录病毒,如异种鼠白血病病毒和C型CHO细胞颗粒中所含的RT活性 | 特异性、准确性、精密度高、稳定 | 仅适用于逆转录病毒类 | 操作简单 | |
化学发光ISH-PNA测定 | 分~小时 | *** | 荧光显微镜+ CCD相机 | B19细小病毒 | 高分辨率,可在单细胞内提供病毒核酸的清晰定位,准确作出病毒感染周期后感染细胞百分比的客观评估,在单细胞水平上对病毒核酸进行定量 | 前期耗材多,需要生物素标记的PNA探针,在其他病毒上是否可行有待验证 | 操作较简单,通过预实验确定特异性抗体使用浓度 | |
病毒颗粒水平 | OD260 | 分 | * | 分光光度计 | 纯化后病毒 | 快速、简单 | 不能区分有感染力和无感染力病毒,病毒需纯化 | 操作简单 |
FACS | 分~小时 | *** | 流式细胞仪 | 病毒需有荧光标记或使用特异性病毒抗体染色 | 快速、可靠 | 仪器花费大,标记病毒蛋白的荧光抗体偶联物试剂不容易获得 | 熟练掌握流式细胞仪操作,通过预实验确定特异性病毒抗体使用浓度 | |
TEM | 小时 | **** | 电子显微镜 | 广泛应用 | 可靠、直观 | 有细胞衍生颗粒的污染(如外泌体),通量低,精确定量难度大 | 操作复杂,需熟练掌握负染色技术和电镜技术 | |
激光力细胞学 | 小时~天 | **** | Radiance LFC 仪 | 广泛应用 | 省时、操作简单 | 仪器昂贵 | 仪器不常见,对检测人员要求高 |
表1 病毒滴度检测方法总结
Table 1 Summary of virus titration methods
方法分类 | 方法名称 | 时间成本 | 费用成本 | 使用仪器 | 适用病毒种类 | 优点 | 缺点 | 可操作性 |
---|---|---|---|---|---|---|---|---|
病毒感染水平 | PFU法 | 天~周 | * | 肉眼或低倍显微镜 | 产生CPE的病毒 | 操作简单 | 重复性差,费时费力,自动化程度差,受主观影响性大,需要病毒在培养时有复制周期 | 操作简单,工作量大,需要有经验的检测人员 |
TCID50法 | 天~周 | * | 普通显微镜 | 产生CPE的病毒 | 操作简单 | 耗时耗力,需要重复多次 | 操作简单,工作量大,需要有经验的检测人员 | |
荧光灶试验 | 天 | ** | 荧光显微镜 | 需要特异性病毒抗体 | 重复性高、降低主观性 | 需要特异性病毒抗体 | 操作较简单,通过预实验确定特异性抗体使用浓度,熟练操作荧光显微镜 | |
IPMA法 | 天 | ** | 荧光显微镜 | 需要特异性病毒抗体 | 高灵敏度、重复性和特异性好 | 结果受个别主观因素影响,且病毒含量过低时无法产生特定的颜色反应,样品阳性检出率略低 | 操作简单,方法成熟,实验所需试剂和耗材成本低 | |
病毒蛋白水平 | ELISA | 小时~天 | ** | 酶标仪 | 广泛应用 | 省时 | 严格性低,测量的病毒元素不一定与病毒颗粒有关 | 操作较简单,通过预实验确定相关实验细节 |
病毒定量毛细管电泳 | 小时~天 | ** | 毛细管 | 广泛应用 | 样品使用量小、分辨率高、操作简单 | 主要应用在病毒类疫苗的质量控制,不是严格意义上的病毒滴定 | 操作简单 | |
病毒核酸水平 | qPCR | 小时 | * | qPCR仪 | 广泛应用 | 快速、灵敏、稳定 | 不能确保仅对感染颗粒进行定量 | 操作简单,考验操作人员精细程度 |
ddPCR | 小时 | ** | 微液滴数字PCR仪 | 广泛应用 | 准确度和精密度高,无需标准曲线或特殊的样品制备,可对目标基因实现绝对定量 | 通量限制,花费大 | 操作简单,但受通量限制,工作量较大 | |
产物增强逆转录酶测定 | 小时~天 | ** | qPCR仪 | 主要应用于逆转录病毒,如异种鼠白血病病毒和C型CHO细胞颗粒中所含的RT活性 | 特异性、准确性、精密度高、稳定 | 仅适用于逆转录病毒类 | 操作简单 | |
化学发光ISH-PNA测定 | 分~小时 | *** | 荧光显微镜+ CCD相机 | B19细小病毒 | 高分辨率,可在单细胞内提供病毒核酸的清晰定位,准确作出病毒感染周期后感染细胞百分比的客观评估,在单细胞水平上对病毒核酸进行定量 | 前期耗材多,需要生物素标记的PNA探针,在其他病毒上是否可行有待验证 | 操作较简单,通过预实验确定特异性抗体使用浓度 | |
病毒颗粒水平 | OD260 | 分 | * | 分光光度计 | 纯化后病毒 | 快速、简单 | 不能区分有感染力和无感染力病毒,病毒需纯化 | 操作简单 |
FACS | 分~小时 | *** | 流式细胞仪 | 病毒需有荧光标记或使用特异性病毒抗体染色 | 快速、可靠 | 仪器花费大,标记病毒蛋白的荧光抗体偶联物试剂不容易获得 | 熟练掌握流式细胞仪操作,通过预实验确定特异性病毒抗体使用浓度 | |
TEM | 小时 | **** | 电子显微镜 | 广泛应用 | 可靠、直观 | 有细胞衍生颗粒的污染(如外泌体),通量低,精确定量难度大 | 操作复杂,需熟练掌握负染色技术和电镜技术 | |
激光力细胞学 | 小时~天 | **** | Radiance LFC 仪 | 广泛应用 | 省时、操作简单 | 仪器昂贵 | 仪器不常见,对检测人员要求高 |
1 | WELDON S K, MISCHNICK S L, URLACHER T M, et al.. Quantitation of virus using laser-based scanning of near-infrared fluorophores replaces manual plate reading in a virus titration assay[J]. J. Virol. Meth., 2010, 168(1-2): 57-62. |
2 | HEIDER S, METZNER C. Quantitative real-time single particle analysis of virions[J]. Virology, 2014, 462-463: 199-206. |
3 | DULBECCO R, VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses[J]. J. Exp. Med., 1954, 99(2): 167-182. |
4 | REED L J, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. Am. J. Epidemiol., 1938, 27(3): 493-497. |
5 | D'HERELLE F. Sur un microbe invisible antagoniste des bacilles dysenteriques[J]. Cr. Acad. Sci. Paris, 1917, 165(10): 373-375. |
6 | DULBECCO R. Production of plaques in monolayer tissue cultures by single particles of an animal virus[J]. Proc. Natl. Acad. Sci. USA, 1952, 38(8): 747-752. |
7 | GRIGOROV B, RABILLOUD J, LAWRENCE P, et al.. Rapid titration of measles and other viruses: optimization with determination of replication cycle length[J/OL]. PLoS ONE, 2011, 6(9): e24135[2024-04-11]. . |
8 | ROWE W P, PUGH W E, HARTLEY J W. Plaque assay techniques for murine leukemia viruses[J]. Virology, 1970, 42(4): 1136-1139. |
9 | COOPER P D. The plaque assay of animal viruses[J]. Adv. Virus Res., 1961, 8: 319-378. |
10 | TROWBRIDGE R S. Evaluation of a plaque assay for the maedi-progressive pneumonia-visna viruses[J]. Appl. Microbiol., 1974, 28(3): 366-373. |
11 | HARADA S, KOYANAGI Y, YAMAMOTO N. Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay[J]. Science, 1985, 229(4713): 563-566. |
12 | KIERNAN R E, MCPHEE D A, DOHERTY R R. Quantitation of infectious human immunodeficiency virus using a modified plaque forming assay[J]. J. Virol. Methods, 1988, 22(2-3): 303-308. |
13 | SHI L, CHEN Q, NORLING L A, et al.. Real time quantitative PCR as a method to evaluate xenotropic murine leukemia virus removal during pharmaceutical protein purification[J]. Biotechnol. Bioeng., 2004, 87(7): 884-896. |
14 | FRIAS-DE-DIEGO A, CRISCI E. Use of crystal violet to improve visual cytopathic effect-based reading for viral titration using TCID50 assays[J/OL]. J. Vis. Exp., 2022(180): e63063[2024-04-11]. . |
15 | PECSON B M, ACKERMANN M, KOHN T. Framework for using quantitative PCR as a nonculture based method to estimate virus infectivity[J]. Environ. Sci. Technol., 2011, 45(6): 2257-2263. |
16 | RICHARDS G P. Limitations of molecular biological techniques for assessing the virological safety of foods[J]. J. Food Prot., 1999, 62(6): 691-697. |
17 | NUANUALSUWAN S, CLIVER D O. Pretreatment to avoid positive RT-PCR results with inactivated viruses[J]. J. Virol. Meth., 2002, 104(2): 217-225. |
18 | PFAENDER S, BRINKMANN J, TODT D, et al.. Mechanisms of methods for hepatitis C virus inactivation[J]. Appl. Environ. Microbiol., 2015, 81(5): 1616-1621. |
19 | PECSON B M, MARTIN L V, KOHN T. Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results[J]. Appl. Environ. Microbiol., 2009, 75(17): 5544-5554. |
20 | ZHANG Y, QU S, XU L. Progress in the study of virus detection methods: the possibility of alternative methods to validate virus inactivation[J]. Biotechnol. Bioeng., 2019, 116(8): 2095-2102. |
21 | LEIFELS M, JURZIK L, WILHELM M, et al.. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine[J]. Int. J. Hyg. Envir. Heal., 2015, 218(8): 686-693. |
22 | GUO X, WANG S, ZHAO C L, et al.. An integrated cell absorption process and quantitative PCR assay for the detection of the infectious virus in water[J]. Sci. Total Environ., 2018, 635: 964-971. |
23 | RYU H, CASHDOLLAR J L, FOUT G S, et al.. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies[J]. J. Environ. Sci. Heal. Part A, 2015, 50(8): 777-787. |
24 | LOCK M, MCGORRAY S, AURICCHIO A, et al.. Characterization of a recombinant adeno-associated virus type 2 reference standard material[J]. Hum. Gene Ther., 2010, 21(10): 1273-1285. |
25 | AI J, IBRAHEIM R, TAI P W L, et al.. A scalable and accurate method for quantifying vector genomes of recombinant adeno-associated viruses in crude lysate[J]. Hum. Gene Ther. Meth., 2017, 28(3): 139-147. |
26 | WERLING N J, SATKUNANATHAN S, THORPE R, et al.. Systematic comparison and validation of quantitative real-time PCR methods for the quantitation of adeno-associated viral products[J]. Hum. Gene Ther. Meth., 2015, 26(3): 82-92. |
27 | D'COSTA S, BLOUIN V, BROUCQUE F, et al.. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR[J/OL]. Mol. Ther. Methods Clin. Dev., 2016, 5: 16019[2024-04-10]. . |
28 | HUSSAIN M, RAYFIELD W J, ROUSH D J. A direct RT qPCR method for quantification of retrovirus-like particles in biopharmaceutical production with CHO cells[J/OL]. J. Pharm. Biomed. Anal., 2020, 189: 113472[2024-04-10]. . |
29 | WANG Y, MENON N, SHEN S, et al.. A qPCR method for AAV genome titer with ddPCR-level of accuracy and precision[J]. Mol. Ther. Meth. Clin. Dev., 2020, 19: 341-346. |
30 | DEIBEL R, HOTCHIN J E. Quantitative applications of fluorescent antibody technique to influenza-virus-infected cell cultures[J]. Virology, 1959, 8(3): 367-380. |
31 | WHEELOCK E F, TAMM I. Enumeration of cell-infecting particles of Newcastle disease virus by the fluorescent antibody technique[J]. J. Exp. Med., 1961, 113(2): 301-316. |
32 | RUSH B S, COUGHLIN M L, SANYAL G. In vitro infectivity of oncolytic Newcastle disease virus: correlation between plaque and fluorescent focus assays[J]. J. Virol. Meth., 2018, 251: 69-74. |
33 | LIU L. Fields virology, 6th edition[J/OL]. Clin. Infect. Dis., 2014, 59(4): 613[2024-04-10]. . |
34 | LEE E M, TITUS S A, XU M, et al.. High-throughput Zika viral titer assay for rapid screening of antiviral drugs[J]. Assay Drug Dev. Technol., 2019, 17(3): 128-139. |
35 | 郭全海, 刘秀玲. 免疫过氧化物酶单层细胞试验检测猪圆环病毒2型方法的建立[J]. 黑龙江畜牧兽医, 2012(11): 122-123+182. |
GUO Q H, LIU X L. Establishment of immunoperoxidase monolayer cell test for detection of porcine circovirus type 2[J]. Heilongjiang Anim. Sci. Vet. Med., 2012(11): 122-123+182. | |
36 | 李晶梅, 朱薇, 秦红刚, 等. IFA和IPMA方法测定猪瘟兔化弱毒病毒含量[J]. 中国兽药杂志, 2013, 47(10):35-38. |
LI J M, ZHU W, QIN H G, et al.. IFA and IPMA for HCLV titer detection[J]. Chin. J. Vet. Drug, 2013, 47(10): 35-38. | |
37 | PAN J, ZENG M, ZHAO M, et al.. Research progress on the detection methods of porcine reproductive and respiratory syndrome virus[J/OL]. Front. Microbiol., 2023, 14: 1097905[2024-04-10]. . |
38 | 钱汶, 陈悦青, 洪艳,等. RT-PCR-ELISA方法检测甲肝减毒活疫苗病毒滴度的初步研究[J]. 中华实验和临床病毒学杂志, 2004, 18(3): 261-264. |
QIAN W, CHEN Y Q, HONG Y, et al.. Preliminary study on RT-PCR-ELISA method for virus titer testing of live attenuated hepatitis A vaccine[J]. Chin. J. Exp. Clin. Virol., 2004, 18(3): 261-264. | |
39 | KLEIN S A, KARSTEN S, RÜSTER B, et al.. Comparison of TaqMan real-time PCR and p24 Elisa for quantification of in vitro HIV-1 replication[J]. J. Virol. Meth., 2003, 107(2): 169-175. |
40 | 刘超, 张玉柯, 刘华. 慢病毒载体p24蛋白含量的ELISA检测方法的建立与应用[J]. 生物技术进展,2023, 13(3): 457-464. |
LIU C, ZHANG Y K, LIU H. Establishment and application of ELISA assay for detection of p24 protein content of lentivirus vector[J]. Curr. Biotechnol., 2023, 13(3): 457-464. | |
41 | 吴妙灵, 白植生. 细胞感染ELISA滴定法(TCIDEA 50)检测轮状病毒感染滴度及其中和抗体的研究[J]. 中华实验和临床病毒学杂志, 1991, 5(3): 326-331. |
WU M L, BAI Z S. Establishment of TCIDEA 50 method for titration of rotavirus infectivity and neutralizing antibodies[J]. Chin. J. Exp. Clin. Virol., 1991, 5(3): 326-331. | |
42 | MIRONOV G G, CHECHIK A V, OZER R, et al.. Viral quantitative capillary electrophoresis for counting intact viruses[J]. Anal. Chem., 2011, 83(13): 5431-5435. |
43 | BETTONVILLE V, NICOL J T, THELEN N, et al.. Study of intact virus-like particles of human papillomavirus by capillary electrophoresis[J]. Electrophoresis, 2016, 37(4): 579-586. |
44 | 郑子繁, 柳方方, 刘卫晓, 等. 数字PCR技术在核酸标准物质研制中的应用[J]. 生物技术进展, 2020, 10(6): 579-584. |
ZHENG Z F, LIU F F, LIU W X, et al.. Application of digital PCR technology in the development of nucleic acid reference materials[J]. Curr. Biotechnol., 2020, 10(6): 579-584. | |
45 | DOBNIK D, KOGOVŠEK P, JAKOMIN T, et al.. Accurate quantification and characterization of adeno-associated viral vectors[J/OL]. Front. Microbiol., 2019, 10: 1570[2024-04-10]. . |
46 | 胡思宏, 游国叶. 数字PCR在新型冠状病毒检测中的应用前景[J]. 生物技术进展, 2020, 10(6): 674-679. |
HU S H, YOU G Y. Application prospects of digital PCR in detection of SARS-CoV-2[J]. Curr. Biotechnol., 2020, 10(6): 674-679. | |
47 | PYRA H, BÖNI J, SCHÜPBACH J. Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement[J]. Proc. Natl. Acad. Sci. USA, 1994, 91(4): 1544-1548. |
48 | LOVATT A, BLACK J, GALBRAITH D, et al.. High throughput detection of retrovirus-associated reverse transcriptase using an improved fluorescent product enhanced reverse transcriptase assay and its comparison to conventional detection methods[J]. J. Virol. Meth., 1999, 82(2): 185-200. |
49 | BRORSON K, XU Y, SWANN P G, et al.. Evaluation of a quantitative product-enhanced reverse transcriptase assay to monitor retrovirus in mAb cell-culture[J]. Biologicals, 2002, 30(1): 15-26. |
50 | SEARS J F, KHAN A S. Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation[J]. J. Virol. Meth., 2003, 108(1): 139-142. |
51 | MA Y K, KHAN A S. Evaluation of different RT enzyme standards for quantitation of retroviruses using the single-tube fluorescent product-enhanced reverse transcriptase assay[J]. J. Virol. Meth., 2009, 157(2): 133-140. |
52 | BONVICINI F, MIRASOLI M, GALLINELLA G, et al.. PNA-based probe for quantitative chemiluminescent in situ hybridisation imaging of cellular parvovirus B19 replication kinetics[J]. Analyst, 2007, 132(6): 519-523. |
53 | MAIZEL J V Jr, WHITE D O, SCHARFF M D. The polypeptides of adenovirus. I. evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12[J]. Virology, 1968, 36(1): 115-125. |
54 | SWEENEY J A, HENNESSEY J P. Evaluation of accuracy and precision of adenovirus absorptivity at 260 nm under conditions of complete DNA disruption[J]. Virology, 2002, 295(2): 284-288. |
55 | SIMEK S, BYRNES A, BAUER S. FDA perspectives on the use of the adenovirus reference material[J]. BioProc. J., 2002, 1(2): 40-42. |
56 | BERKOWITZ S A. Determining the concentration and the absorptivity factor at 260 nm in sodium dodecyl sulfate of the adenovirus reference material using analytical ultracentrifugation[J]. Anal. Biochem., 2008, 380(1): 152-154. |
57 | BERKOWITZ S A, PHILO J S. Monitoring the homogeneity of adenovirus preparations (a gene therapy delivery system) using analytical ultracentrifugation[J]. Anal. Biochem., 2007, 362(1): 16-37. |
58 | LI Z, LING L, LIU X, et al.. A flow cytometry-based immuno-titration assay for rapid and accurate titer determination of modified vaccinia Ankara virus vectors[J]. J. Virol. Meth., 2010, 169(1): 87-94. |
59 | LONSDALE R, PAU M G, OERLEMANS M, et al.. A rapid method for immunotitration of influenza viruses using flow cytometry[J]. J. Virol. Meth., 2003, 110(1): 67-71. |
60 | MCSHARRY J J. Analysis of virus-infected cells by flow cytometry[J]. Methods, 2000, 21(3): 249-257. |
61 | KUNG S H, WANG Y C, LIN C H, et al.. Rapid diagnosis and quantification of herpes simplex virus with a green fluorescent protein reporter system[J]. J. Virol. Meth., 2000, 90(2): 205-212. |
62 | FOSTER T P, RYBACHUK G V, KOUSOULAS K G. Expression of the enhanced green fluorescent protein by herpes simplex virus type 1 (HSV-1) as an in vitro or in vivo marker for virus entry and replication[J]. J. Virol. Meth., 1998, 75(2): 151-160. |
63 | CTSAI Y, HTSAI T, CHANG C P, et al.. Linear correlation between average fluorescence intensity of green fluorescent protein and the multiplicity of infection of recombinant adenovirus[J/OL]. J. Biomed. Sci., 2015, 22(1): 31[2024-04-10]. . |
64 | VENGATESAN D, RAJ G D, RAJA A, et al.. Detection of rabies virus antigen or antibody using flow cytometry[J]. Clin. Cytom., 2006, 70(5): 335-343. |
65 | BOTTLEY G, HOLT J R, JAMES N J, et al.. Flow cytometric detection of adenoviruses and intracellular adenovirus proteins[J]. Meth. Mol. Med., 2007, 130: 205-213. |
66 | LOGAN M, MANALIL J, NOTTE C, et al.. A flow cytometric granularity assay for the quantification of infectious virus[J]. Vaccine, 2019, 37(47): 7090-7099. |
67 | QI J, LIU T, PAN J, et al.. Rapid baculovirus titration assay based on viable cell side scatter (SSC)[J]. Anal. Chim. Acta, 2015, 879: 58-62. |
68 | NIU Q, MA L, ZHU S, et al.. Quantitative assessment of the physical virus titer and purity by ultrasensitive flow virometry[J]. Angew. Chem. Int. Ed. Engl., 2021, 60(17): 9351-9356. |
69 | ALAIN R. Quantitation of virus particles by negative stain electron microscopy[J]. Microscopy Today, 1997, 97: 20. |
70 | KWON Y J, HUNG G, ANDERSON W F, et al.. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis[J]. J. Virol., 2003, 77(10): 5712-5720. |
71 | GLUSCHANKOF P, MONDOR I, GELDERBLOM H R, et al.. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations[J]. Virology, 1997, 230(1): 125-133. |
72 | 冯红丽, 彭宇宁, 宋敬东. 一种用于贴壁培养细胞感染病毒检测的简易光镜-电镜联用技术[J]. 电子显微学报, 2023, 42(1): 86-93. |
FENG H L, PENG Y N, SONG J D. A simple correlative light and electron microscopy for virus detection in adherent culture cells[J]. J. Chin. Electron Microsc. Soc., 2023, 42(1): 86-93. | |
73 | HEBERT C G, DINARDO N, EVANS Z L, et al.. Rapid quantification of vesicular stomatitis virus in Vero cells using laser force cytology[J]. Vaccine, 2018, 36(41): 6061-6069. |
74 | HEBERT C G, HART S J, TERRAY A. Label free detection of pseudorabies virus infection in Vero cells using laser force analysis[J]. Analyst, 2014, 139(6): 1472-1481. |
75 | HEBERT C G, RODRIGUES K L, DINARDO N, et al.. Viral infectivity quantification and neutralization assays using laser force cytology[J]. Meth. Mol. Biol., 2021, 2183: 575-585. |
[1] | 张永红, 李岩异, 刘容麟, 吕娜, 张卫婷. IgY在抗病毒医学领域中的应用[J]. 生物技术进展, 2024, 14(1): 35-41. |
[2] | 杜力,刘晓志,魏敬双,高健. 蛋白质药物糖基化工程化改造研究进展[J]. 生物技术进展, 2020, 10(5): 448-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部