生物技术进展 ›› 2022, Vol. 12 ›› Issue (2): 189-197.DOI: 10.19586/j.2095-2341.2021.0170
费云燕(), 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵(
)
收稿日期:
2021-10-20
接受日期:
2021-11-12
出版日期:
2022-03-25
发布日期:
2022-03-25
通讯作者:
龚红兵
作者简介:
费云燕 E-mail:suiyiyixinyisi@163.com;
基金资助:
Yunyan FEI(), Jun YANG, Dedao JING, Tianzi LIN, Chuang LI, Huafei QIAN, Shengyuan ZENG, Huaxin HAN, Hongbing GONG(
)
Received:
2021-10-20
Accepted:
2021-11-12
Online:
2022-03-25
Published:
2022-03-25
Contact:
Hongbing GONG
摘要:
CRISPR/Cas系统是一种简单、低成本、高效、精准的基因编辑技术,该技术能够进行基因的定向改造,加速新品种培育进程,在种质资源创制中的应用潜力较高。概述了CRISPR/Cas系统的技术原理及其在作物抗除草剂育种中的应用,简要指出了目前CRISPR/Cas技术在抗除草剂种质创制及应用过程中存在的问题及发展方向,以期为今后利用CRISPR/Cas技术创制抗除草剂新种质提供理论依据。
中图分类号:
费云燕, 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵. CRISPR/Cas技术在抗除草剂作物育种中的研究与应用进展[J]. 生物技术进展, 2022, 12(2): 189-197.
Yunyan FEI, Jun YANG, Dedao JING, Tianzi LIN, Chuang LI, Huafei QIAN, Shengyuan ZENG, Huaxin HAN, Hongbing GONG. Research and Application Progress of CRISPR/Cas Technology in Herbicide⁃resistant Crops Breeding[J]. Current Biotechnology, 2022, 12(2): 189-197.
图2 不同基因编辑系统构成及其介导的非同源末端连接与同源重组修复[15]
Fig.2 Composition of different gene editing systems and their mediated non?homologous end connection and homologous recombination repair[15]
物种 | 靶基因 | 编辑工具 | 修饰方式 | 参考文献 |
---|---|---|---|---|
水稻 | ALS | CRISPR/Cas9 | G628W | [ |
ALS | CRISPR/Cas9(CRISPR/Cpf)+供体DNA | W548L、S627I | [ | |
ALS | CBE | A96V | [ | |
ALS | CBE | P17F | [ | |
ALS | 引导编辑 | W548L、P171S | [ | |
ALS | 引导编辑 | S624I | [ | |
ALS | 引导编辑 | S627N | [ | |
ALS | 引导编辑 | W542L、S621I | [ | |
EPSPS | CRISPR/Cas9+供体DNA | T102I、P106S | [ | |
EPSPS | CBE | T102I | [ | |
ACCase | ABE | C2186R、I1879V、W2125S | [ | |
ACCase | 引导编辑 | D2176G | [ | |
AFB4 | CRISPR/Cas9 | 基因敲除 | [ | |
SF3B1 | CRISPR/Cas9 | K1050E、H1048Q | [ | |
TubA2 | ABE | M268T | [ | |
西红柿 | ALS | CRISPR/Cas9+供体DNA | P186A | [ |
ALS | CBE | P186A | [ | |
玉米 | ALS | CRISPR/Cas9+供体DNA | P165S | [ |
ALS | CBE | P165S、P165A、P165L | [ | |
小麦 | ALS | CBE | P174F、P174S、P174A | [ |
ACCase | CBE | A1992V | [ | |
大豆 | ALS | CRISPR/Cas9+供体DNA | P178S | [ |
ALS | CBE | P182S、P182T | [ | |
油菜 | ALS | CBE | P197F、P197S、P173S、P173L | [ |
西瓜 | ALS | CBE | P190S、P190L | [ |
烟草 | ALS | CRISPR/Cas9+供体DNA | W568L、S647T | [ |
ALS | CBE | P194S、P194L | [ |
表1 CRISPR/Cas系统在抗除草剂作物育种中的应用
Table 1 Application of CRISPR/Cas system in herbicide?resistant crops breeding
物种 | 靶基因 | 编辑工具 | 修饰方式 | 参考文献 |
---|---|---|---|---|
水稻 | ALS | CRISPR/Cas9 | G628W | [ |
ALS | CRISPR/Cas9(CRISPR/Cpf)+供体DNA | W548L、S627I | [ | |
ALS | CBE | A96V | [ | |
ALS | CBE | P17F | [ | |
ALS | 引导编辑 | W548L、P171S | [ | |
ALS | 引导编辑 | S624I | [ | |
ALS | 引导编辑 | S627N | [ | |
ALS | 引导编辑 | W542L、S621I | [ | |
EPSPS | CRISPR/Cas9+供体DNA | T102I、P106S | [ | |
EPSPS | CBE | T102I | [ | |
ACCase | ABE | C2186R、I1879V、W2125S | [ | |
ACCase | 引导编辑 | D2176G | [ | |
AFB4 | CRISPR/Cas9 | 基因敲除 | [ | |
SF3B1 | CRISPR/Cas9 | K1050E、H1048Q | [ | |
TubA2 | ABE | M268T | [ | |
西红柿 | ALS | CRISPR/Cas9+供体DNA | P186A | [ |
ALS | CBE | P186A | [ | |
玉米 | ALS | CRISPR/Cas9+供体DNA | P165S | [ |
ALS | CBE | P165S、P165A、P165L | [ | |
小麦 | ALS | CBE | P174F、P174S、P174A | [ |
ACCase | CBE | A1992V | [ | |
大豆 | ALS | CRISPR/Cas9+供体DNA | P178S | [ |
ALS | CBE | P182S、P182T | [ | |
油菜 | ALS | CBE | P197F、P197S、P173S、P173L | [ |
西瓜 | ALS | CBE | P190S、P190L | [ |
烟草 | ALS | CRISPR/Cas9+供体DNA | W568L、S647T | [ |
ALS | CBE | P194S、P194L | [ |
1 | HAN Y J, KIM J I. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants [J]. Plant Biotechnol. Rep., 2019, 13(5): 447-457. |
2 | ZISKA L H. Climate change and the herbicide paradigm: Visiting the future [J/OL]. Agronomy, 2020, 10(12): 1953[2021-06-07]. . |
3 | RODENBURG J, JOHNSON D. Weed management in rice-based cropping systems in Africa [J]. Adv. Agron., 2009, 103: 149-218. |
4 | HUSSAIN A, DING X, ALARIQI M, et al.. Herbicide resistance: another hot agronomic trait for plant genome editing [J/OL]. Plants, 2021, 10(4): 621[2021-06-07]. . |
5 | 李燕敏,祁显涛,刘昌林,等.除草剂抗性农作物育种研究进展[J].作物杂志,2018,33(2):1-6. |
6 | 于东洋,王凤梧,融晓萍,等.利用CRISPR/Cas9 技术对燕麦乙酰辅酶A羧化酶 (ACCase)基因的编辑[J].分子植物育种,2019,17(19):6356-6362. |
7 | GREEN J M. Current state of herbicides in herbicideresistant crops [J]. Pest. Manag. Sci., 2014, 70(9): 1351-1357. |
8 | DLYE C, JASIENIUK M, CORRE V. Deciphering the evolution of herbicide resistance in weeds [J]. Trends Genet., 2013, 29(11): 649-658. |
9 | KUDSK P, STREIBIG J C. Herbicides-a two-edged sword[J]. Weed Res., 2003, 43(2): 90-102. |
10 | DURAND-MORAT A, NALLEY L L. Economic benefits of controlling red rice: a case study of the United States [J/OL]. Agronomy, 2019, 9(8): 422[2021-06-07]. . |
11 | BALDWIN F L. Transgenic crops: a view from the US Extension Service [J]. Pest Manag. Sci., 2000, 56(7): 584-585. |
12 | CANADIAN B A N. Where in the world are GM crops and foods? [R]. Ottawa: Canadian Biotechnology Action Network, 2015: 1-30. |
13 | 薛满德,龙艳,裴新梧.基因编辑技术及其在作物育种中的应用与安全管理[J].中国农业科技导报,2018,20(9):12-22. |
14 | BHATTACHARYA A, PARKHI V, CHAR B. CRISPR/Cas genome editing: strategies and potential for crop improvement [M]. Berlin: Springer Nature, 2020: 3-4. |
15 | JIANG F, DOUDNA J. CRISPR-Cas9 structures and mechanisms [J]. Annu. Rev. Biophys., 2017, 46: 505-529. |
16 | 刘欣欣,李赫,卜庆云,等.CRISPR/Cas9 系统在水稻分子育种中的应用[J].土壤与作物,2021,10(1):18-26. |
17 | 李希陶,刘耀光.基因组编辑技术在水稻功能基因组和遗传改良中的应用[J].生命科学,2016,28(10):1243-1249. |
18 | ZHANG D, ZHANG Z, UNVER T, et al.. CRISPR/Cas: A powerful tool for gene function study and crop improvement [J]. J. Adv. Res., 2020, 29: 207-221. |
19 | SABZEHZARI M, ZEINALI M, NAGHAVI M R. CRISPR-based metabolic editing: next-generation metabolic engineering in plants [J/OL]. Gene, 2020, 759: 144993[2021-06-07]. . |
20 | 陈易雨,王志平,倪汉文,等.CRISPR/Cas9 单碱基编辑技术创制抗除草剂拟南芥种质[J].中国科学(生命科学),2017,47(11):1196-1199. |
21 | MA L, LIANG Z. CRISPR technology for abiotic stress resistant crop breeding [J]. Plant Growth Regul., 2021, 94: 115-129. |
22 | 秦瑞英,魏鹏程.Prime editing引导植物基因组精确编辑新局面[J].遗传,2020,42(6):519-523. |
23 | 罗银,刘峰.CRISPR/Cas9技术在作物中的研究及应用进展[J].作物研究,2020,34(6):588-596. |
24 | CHENG H, HAO M, DING B, et al.. Base editing with high efficiency in allotetraploid oilseed rape by A3A‐PBE system [J]. Plant Biotechnol. J., 2021, 19(1): 87-97. |
25 | GUO F, HUANG Y, QI P, et al.. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance [J]. New Phytol., 2021, 229(5): 2676-2692. |
26 | KUANG Y, LI S, REN B, et al.. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Mol. Plant, 2020, 13(4): 565-572. |
27 | WANG F, XU Y, LI W, et al.. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing [J]. Crop J., 2021, 9(2): 305-312. |
28 | BUTT H, EID A, MOMIN A A, et al.. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors [J/OL]. Genome Biol., 2019, 20(1): 73[2021-06-07]. . |
29 | HUANG T K, ARMSTRONG B, SCHINDELE P, et al.. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a [J]. Plant Biotechnol. J., 2021, 19(7): 1314-1324. |
30 | DANILO B, PERROT L, MARA K, et al.. Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato [J]. Plant Cell Rep., 2019, 38(4): 459-462. |
31 | SVITASHEV S, YOUNG J K, SCHWARTZ C, et al.. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA [J]. Plant Physiol., 2015, 169(2): 931-945. |
32 | LI Z, LIU Z B, XING A, et al.. Cas9-guide RNA directed genome editing in soybean [J]. Plant Physiol., 2015, 169(2): 960-970. |
33 | SUN Y, ZHANG X, WU C, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol. Plant, 2016, 9(4): 628-631. |
34 | LI S, LI J, ZHANG J, et al.. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice [J]. J. Exp. Bot., 2018, 69(20): 4715-4721. |
35 | LI J, MENG X, ZONG Y, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J/OL]. Nat. Plants, 2016, 2(10): 16139[2021-06-07]. . |
36 | SVITASHEV S, SCHWARTZ C, LENDERTS B, et al.. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J/OL]. Nat. Commun., 2016, 7(1): 13274[2021-06-07]. . |
37 | ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice [J]. Plant Physiol., 2016, 170(2): 667-677. |
38 | MISHRA R, JOSHI R K, ZHAO K. Base editing in crops: current advances, limitations and future implications [J]. Plant Biotechnol. J., 2020, 18(1): 20-31. |
39 | SHIMATANI Z, FUJIKURA U, ISHII H, et al.. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice [J]. Data Brief, 2018, 20: 1325-1331. |
40 | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al.. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion [J]. Nat. Biotechnol., 2017, 35(5): 441-443. |
41 | ENDO M, MIKAMI M, ENDO A, et al.. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM [J]. Nat. Plants, 2019, 5(1): 14-17. |
42 | KANG B C, YUN J Y, KIM S T, et al.. Precision genome engineering through adenine base editing in plants [J]. Nat. Plants, 2018, 4(7): 427-431. |
43 | KANG B C, WOO J W, KIM S T, et al.. Guidelines for C to T base editing in plants: base-editing window, guide RNA length, and efficient promoter [J]. Plant Biotechnol. Rep., 2019, 13(5): 533-541. |
44 | ZONG Y, SONG Q, LI C, et al.. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A [J]. Nat. Biotechnol., 2018, 36(10): 950-953. |
45 | LI Y, ZHU J, WU H, et al.. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize [J]. Crop J., 2020, 8(3): 449-456. |
46 | TIAN S, JIANG L, CUI X, et al.. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing [J]. Plant Cell Rep., 2018, 37(9): 1353-1356. |
47 | VEILLET F, PERROT L, CHAUVIN L, et al.. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor [J/OL]. Int. J. Mol. Sci., 2019, 20(2): 402[2021-06-07]. . |
48 | ZHANG R, LIU J, CHAI Z, et al.. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing [J]. Nat. Plants, 2019, 5(5): 480-485. |
49 | WU J, CHEN C, XIAN G, et al.. Engineering herbicide‐resistant oilseed rape by CRISPR/Cas9‐mediated cytosine base-editing [J]. Plant Biotechnol. J., 2020, 18(9): 1857-1859. |
50 | LIU X, QIN R, LI J, et al.. A CRISPR-Cas9-mediated domain‐specific base‐editing screen enables functional assessment of ACCase variants in rice [J]. Plant Biotechnol. J., 2020, 18(9): 1845-1847. |
51 | LI C, ZONG Y, WANG Y, et al.. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion [J]. Genome Biol., 2018, 19(1): 1-9. |
52 | LIU L, KUANG Y, YAN F, et al.. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2 [J]. Plant Biotechnol. J., 2021, 19(1): 5-7. |
53 | HUANG T K, PUCHTA H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering [J]. Transgenic Res., 2021, 30: 529-549. |
54 | TANG X, SRETENOVIC S, REN Q, et al.. Plant prime editors enable precise gene editing in rice cells [J]. Mol. Plant, 2020, 13(5): 667-670. |
55 | LI H, LI J, CHEN J, et al.. Precise modifications of both exogenous and endogenous genes in rice by prime editing [J]. Mol. Plant, 2020, 13(5): 671-674. |
56 | XU W, ZHANG C, YANG Y, et al.. Versatile nucleotides substitution in plant using an improved prime editing system [J]. Mol. Plant, 2020, 13(5): 675-678. |
57 | HUA K, JIANG Y, TAO X, et al.. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnol. J., 2020, 18(11): 2167-2169. |
58 | BUTT H, RAO G S, SEDEEK K, et al.. Engineering herbicide resistance via prime editing in rice [J]. Plant Biotechnol. J., 2020, 18(12): 2370-2372. |
59 | LU Y, TIAN Y, SHEN R, et al.. Precise genome modification in tomato using an improved prime editing system [J]. Plant Biotechnol. J., 2021, 19(3): 415-417. |
60 | JIANG Y Y, CHAI Y P, LU M H, et al.. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize [J/OL]. Genome Biol., 2020, 21: 257[2021-06-07]. . |
61 | 吴言,郝雅荞,韦璇,等.新一代精准基因编辑工具 CRISPR/Cas9的技术优势与应用局限生[J].生物技术通报,2018,34(5):1-8. |
62 | HU Z, ZHANG T, ROMBAUT D, et al.. Genome editing-based engineering of CESA3 dual cellulose-inhibitor-resistant plants [J]. Plant Physiol., 2019, 180(2): 827-836. |
63 | CHU Z, CHEN J, NYPORKO A, et al.. Novel α-tubulin mutations conferring resistance to dinitroaniline herbicides in Lolium rigidum [J/OL]. Front. Plant Sci., 2018, 9: 97[2021-06-10]. . |
64 | 吴云雨,肖宁,余玲,等.我国抗除草剂水稻种质创制研究进展[J].植物遗传资源学报,2021,22(4):890-899. |
65 | 刘肖静,王旭静,王志兴.CRISPR-Cas 系统在植物中的研究进展与监管政策[J].生物技术进展,2021,11(1):1-8. |
[1] | 咸志慧, 龙卫华, 谭筱玉, 胡茂龙, 浦惠明. 高油酸油菜遗传育种研究进展[J]. 生物技术进展, 2022, 12(5): 641-646. |
[2] | 翟文玲, 刘彩云, 刘颖, 付必胜, 蔡瑾, 郭炜, 张巧凤, 吴纪中. 小麦赤霉病新抗源的发掘与抗性位点的检测分析[J]. 生物技术进展, 2021, 11(5): 581-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部