1 |
SAEEDI P, PETERSOHN I, SALPEA P, et al.. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J/OL]. Diabetes Res. Clin. Pract., 2019,157: 107843[2021-11-01]..
|
2 |
RUBLER S, DLUGAS J, YUCEOGLU Y Z, et al.. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am. J. Cardiol., 1972,30(6): 595-602.
|
3 |
ALONSO N, MOLINER P, MAURICIO D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy[J]. Adv. Exp. Med. Biol., 2018,1067: 197-217.
|
4 |
MURTAZA G, VIRK H U H, KHALID M, et al.. Diabetic cardiomyopathy-a comprehensive updated review[J]. Prog. Cardiovasc. Dis., 2019,62(4): 315-326.
|
5 |
LIU F H, SONG R S, FENG Y Q, et al.. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α[J]. Circulation, 2015,131(9): 795-804.
|
6 |
LEE T W, BAI K J, LEE T I, et al.. PPARs modulate cardiac metabolism and mitochondrial function in diabetes[J/OL]. J. Biomed. Sci., 2017,24(1):5[2021-11-01]. .
|
7 |
EVANGELISTA I, NUTI R, PICCHIONI T, et al.. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy[J/OL]. Int. J. Mol. Sci., 2019,20(13): 3264[2021-11-01]. .
|
8 |
RIEHLE C, ABEL E D. Insulin signaling and heart failure[J]. Circ. Res., 2016,118(7): 1151-1169.
|
9 |
ADAMEOVA A, DHALLA N S. Role of microangiopathy in diabetic cardiomyopathy[J]. Heart Fail. Rev., 2014,19(1): 25-33.
|
10 |
赵航, 冯景辉, 吴秀萍. 糖尿病心肌病发病机制的研究进展[J]. 国际心血管病杂志, 2016,43(01): 16-18.
|
11 |
JIA G H, DEMARCO V G, SOWERS J R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat. Rev. Endocrinol., 2016,12(3): 144-153.
|
12 |
SZABLEWSKI L. Glucose transporters in healthy heart and in cardiac disease[J]. Int. J. Cardiol., 2017,230: 70-75.
|
13 |
王瑞瑶, 霍梦露, 李超, 等. 小檗碱对高糖诱导心肌细胞AMPK-AS160-GLUT4通路的调节及保护作用[J]. 中国临床保健杂志, 2020,23(02): 241-246.
|
14 |
SHAH M S, BROWNLEE M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes[J]. Circ. Res., 2016,118(11): 1808-1829.
|
15 |
ZL0BINE I, GOPAL K, USSHER J R. Lipotoxicity in obesity and diabetes-related cardiac dysfunction[J]. Biochim. Biophys. Acta, 2016,1861(10): 1555-1568.
|
16 |
AROW M, WALDMAN M, YADIN D, et al.. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy[J/OL]. Cardiovasc. Diabetol., 2020,19(1): 7[2021-11-01]. .
|
17 |
FARIA A, PERSAUD S J. Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential[J]. Pharmacol. Ther., 2017,172: 50-62.
|
18 |
RADA P, GONZÁLEZ-RODRÍGUEZ Á, GARCÍA-MONZÓN C, et al.. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?[J/OL]. Cell Death Dis., 2020,11(9): 802[2021-11-01]. .
|
19 |
YAZICI D, SEZER H. Insulin resistance, obesity and lipotoxicity[J]. Adv. Exp. Med. Biol., 2017,960: 277-304.
|
20 |
JIA G H, WHALEY-CONNELL A, SOWERS J R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia, 2018,61(1): 21-28.
|
21 |
WU H K, ZHANG Y, CAO C M, et al.. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis[J]. Circulation, 2019,139(7): 901-914.
|
22 |
陶静, 钱润芳, 陈俊婷, 等. 下调CD36在心肌中的表达对肥胖小鼠心肌纤维化和凋亡的影响[J]. 医学研究杂志, 2019,48(09): 25-30.
|
23 |
AGUER C, MERCIER J, MAN C Y, et al.. Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients[J]. Diabetologia, 2010,53(6): 1151-1163.
|
24 |
YU Q L, VAZQUEZ R, ZABADI S, et al.. T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice[J]. Matrix Biol., 2010,29(6): 511-518.
|
25 |
WANG S Y, ZHAO X X, YANG S, et al.. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway[J]. Chem. Biol. Interact., 2017,278: 48-53.
|
26 |
DENG L, CHEN X X, ZHONG Y, et al.. Activation of TGR5 partially alleviates high glucose-induced cardiomyocyte injury by inhibition of inflammatory responses and oxidative stress[J]. Oxid. Med. Cell. Longev., 2019,2019: 1-11.
|
27 |
WANG Y, QIAN Y Y, FANG Q L, et al.. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2[J/OL]. Nat. Commun., 2017,8(1):13997[2021-11-01]. .
|
28 |
林中民, 陈国荣, 张泉波, 等. 髓样分化蛋白2基因沉默对高糖诱导的大鼠心肌细胞增殖抑制、凋亡及炎症反应的影响[J]. 中国应用生理学杂志, 2019,35(03): 273-279.
|
29 |
RUSSO I, FRANGOGIANNIS N G. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities[J]. J. Mol. Cell. Cardiol., 2016,90: 84-93.
|
30 |
ZHANG Y, WANG J H, ZHANG Y Y, et al.. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFbeta1 and miR-29 pathways[J/OL]. Sci. Rep., 2016,6: 23010[2021-11-01]. .
|
31 |
ADEBIYI O A, ADEBIYI O O, OWIRA P M. Naringin reduces hyperglycemia-induced cardiac fibrosis by relieving oxidative stress[J/OL]. PLoS ONE, 2016,11(3): e0149890[2021-11-01]. .
|
32 |
FU S, LI Y L, WU Y T, et al.. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis[J]. J. Pharm. Pharmacol., 2020,72(2): 227-235.
|
33 |
LIU J C, WANG F, XIE M L, et al.. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts[J]. Int. J. Cardiol., 2017,228: 388-393.
|
34 |
MENG S Y, YANG F, WANG Y Q, et al.. Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling[J]. Cell Biol. Int., 2019,43(1): 65-72.
|
35 |
GBR A A, ABDEL B N A, MOHAMED E A, et al.. Cardioprotective effect of pioglitazone and curcumin against diabetic cardiomyopathy in type 1 diabetes mellitus: impact on CaMKII/NF-κB/TGF-β1 and PPAR-γ signaling pathway[J]. Naunyn. Schmied. Arch. Pharmacol., 2021,394(2): 349-360.
|
36 |
YAN X L, WANG Y Y, YU Z F, et al.. Peroxisome proliferator-activated receptor-gamma activation attenuates diabetic cardiomyopathy via regulation of the TGF-β/ERK pathway and epithelial-to-mesenchymal transition[J]. Life Sci., 2018,213: 269-278.
|
37 |
LI G H, XING W J, ZHANG M, et al.. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/MMP-9 expression in diabetic rats[J]. Am. J. Physiol. Heart Circ. Physiol., 2018,315(4): H802-H813.
|
38 |
WESTERMANN D, RUTSCHOW S, JÄGER S, et al.. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism[J]. Diabetes, 2007,56(3): 641-646.
|
39 |
谢发江, 蒋松辰, 高尚远, 等. 法舒地尔调控巨噬细胞极化改善糖尿病小鼠心肌纤维化[J]. 中国病理生理杂志, 2019,35(05): 881-888.
|