生物技术进展 ›› 2018, Vol. 8 ›› Issue (5): 450-458.DOI: 10.19586/j.2095-2341.2018.0077

• 研究论文 • 上一篇    

废弃铅锌矿石和钨矿砂中可培养细菌多样性分析

邹卫玲1,冯广达1,2,李华平2,朱红惠1*   

  1. 1.广东省微生物研究所, 省部共建华南应用微生物国家重点实验室; 广东省微生物菌种保藏与应用重点实验室; 广东省微生物应用新技术公共实验室, 广州 510070; 2.华南农业大学农学院, 广州 510642
  • 收稿日期:2018-06-21 出版日期:2018-09-25 发布日期:2018-07-02
  • 通讯作者: 朱红惠,研究员,博士,从事微生物资源收集及功能研究。E-mail: zhuhh@gdim.cn
  • 作者简介:邹卫玲,主要从事微生物资源研究。E-mail: zouwl@gdim.cn。
  • 基金资助:
    广州市珠江科技新星项目(201610010028);广东省科技创新领军人才项目(2015TX01N036);广东省科学院实施创新驱动发展能力建设专项资金项目(2017GDASCX-0402)资助。

Diversity Analyses of Culturable Bacteria in Abandoned Lead-zinc Ore and Tungsten Sands

ZOU Weiling, FENG Guangda, LI Huaping, ZHU Honghui   

  1. 1.Guangdong Open Laboratory of Applied Microbiology; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China; 2.College of Agriculture, South China Agricultural University, Guangzhou 510642, China
  • Received:2018-06-21 Online:2018-09-25 Published:2018-07-02

摘要: 为了了解废弃铅锌矿石和钨矿砂中可培养细菌的多样性,发掘其中的微生物新资源,采用3种培养基(R2A、无磷R2A、无磷R2A+Cd2+)分别对其中的可培养细菌进行分离纯化和培养。再通过16S rRNA基因测序获取相关的分类学信息,并进行系统进化分析。从2种材料中共分离到可培养细菌152株。其中,废弃铅锌矿石中的可培养细菌涵盖了5个门、7个分支,分属于Alphaproteobacteria、Betaproteobacteria、Gammaproteobacteria、Deinococcus-Thermus、Actinobacteria、Bacteroidetes和Firmicutes,以Massilia、Methylobacterium、Deinococcus和Sphingomonas为主要类群;而钨矿砂中的可培养细菌涵盖了3个门、4个分支,分属于Alphaproteobacteria、Betaproteobacteria、Actinobacteria和Firmicutes,以Methylobacterium、Massilia、Ralstonia和Microbacterium为主要类群。废弃铅锌矿石中可培养细菌的多样性和新分类单元发现率均大于钨矿砂,且两者的可培养细菌类群组成存在较大差异。此外,向培养基中添加重金属Cd2+降低了可培养细菌的多样性。研究分离到的Cd2+耐受菌株主要属于3个属:Methylobacterium、Herbaspirillum和Ralstonia,其能耐受2 mmol/L Cd2+,是金属尾矿中重金属耐受菌的优势种群。研究结果为金属尾矿中微生物新资源的深入发掘提供了依据。

关键词: 废弃铅锌矿石, 钨矿砂, R2A, 可培养细菌, 16S rRNA基因

Abstract: To investigate the diversity of culturable bacteria in abandoned lead-zinc ore and tungsten sands and explore novel microorganism, three media were used to isolate bacteria from the two materials, including R2A, phosphate free R2A and phosphate free R2A + Cd2+. Then the 16S rRNA gene sequences of the isolates were PCR amplified and sequenced, and then phylogenetic analysis was carried out. A total of 152 isolates were obtained from the abandoned lead-zinc ore and tungsten sands. The culturable bacteria isolated from abandoned lead-zinc ore were affiliated to 5 phyla and 7 branches, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deinococcus-Thermus, Actinobacteria, Bacteroidetes, Firmicutes, with Massilia, Methylobacterium, Deinococcus, Sphingomonas as the dominant group, while those from tungsten sands were distributed into 3 phyla and 4 branches, including Alphaproteobacteria, Betaproteobacteria, Actinobacteria, Firmicutes, with Methylobacterium, Massilia, Ralstonia, Microbacterium as the dominant group. It showed that the diversity and novel taxon discovery rate of culturable bacteria in abandoned lead-zinc ore were greater than those in tungsten sands. The two materials showed huge differences in bacterial composition. Adding cadimum into the phosphate free R2A medium dramatically reduced the diversity of culturable bacteria, and only 3 genera were obtained from the medium with cadmium, including Methylobacterium, Herbaspirillum and Ralstonia. These strains could tolerate 2 mmol/L Cd2+ and they were the dominant group in metal tailings. This study provided references for the culturable bacteria community and novel microbial resource exploration.

Key words: abandoned lead-zinc ore, tungsten sands, R2A, culturable bacteria, 16S rRNA gene