1 |
BIAN G, DENG Z, LIU T. Strategies for terpenoid overproduction and new terpenoid discovery[J]. Curr. Opin. Biotechnol., 2017, 48: 234-241.
|
2 |
邓春萌,王哑倩,吴美媛.牛樟芝固态发酵菌丝体三萜及多糖提取工艺优化研究[J].生物技术进展,2020,10(3):328-331.
|
3 |
薛海洁,孙文涛,赵雨佳,等.微生物合成植物三萜及其皂苷化合物[J].生物产业技术,2019(1):19-26.
|
4 |
张春月,金佳杨,邱勇隽,等.传统与未来的碰撞:食品发酵工程技术与应用进展[J].生物技术进展,2021,11(4):418-429.
|
5 |
ZHAO Y, LV B, FENG X, et al.. Perspective on biotransformation and de vovo biosynthesis of licorice constituents[J]. J. Agric. Food Chem., 2017, 65(51): 11147-11156.
|
6 |
DAI Z, LIU Y, SUN Z, et al.. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories[J]. Metab. Eng., 2019, 51: 70-78.
|
7 |
GAO Q, WANG L, ZHANG M, et al.. Recent advances on feasible strategies for monoterpenoid production in Saccharomyces cerevisiae [J/OL]. Front. Bioeng. Biotechnol., 2020, 8: 609800[2020-12-01]. .
|
8 |
黄雪年,唐慎,吕雪峰.工业丝状真菌土曲霉合成生物技术研究进展及展望[J].合成生物学,2020,1(2):187-211.
|
9 |
VON D W, GODTFREDSEN W O, RASMUSSEN P R. Structure-activity relationships in fusidic acid-type antibiotics[J]. Adv. Appl. Microbiol., 1979, 25: 95-146.
|
10 |
LUO X, ZHOU X, LIN X, et al.. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01 [J]. Nat. Prod. Res., 2017, 31(16): 1958-1962.
|
11 |
蔡嘉慧,林夏,黄赛,等.海南霸王岭卷萼兜兰根际土壤真菌的分离与鉴定[J].现代农业科技,2020,23:113-115.
|
12 |
刘少华,陆金萍,朱瑞良,等.一种快速简便的植物病原真菌基因组DNA提取方法[J].植物病理学报,2005,35(4):362-365.
|
13 |
FUJIMOTO H, NEGISHI E, YAMAGUCHI K, et al.. Isolation of new tremorgenic metabolites from an ascomycete Corynascus setosus [J]. Chem. Pharm. Bull., 1996, 44(10): 1843-1848.
|
14 |
ZHU J, LIU L, WU M, et al.. Characterization of a sesquiterpene synthase catalyzing formation of cedrol and two diastereoisomers of tricho-acorenol from Euphorbia fischeriana [J]. J. Nat. Prod., 2021, 84(6): 1780-1786.
|
15 |
ZHANG P, BAO B, DANG H T, et al.. Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. [J]. J. Nat. Prod., 2009, 72(2): 270-275.
|
16 |
SINGH S B, BALL R G, BILLS G F, et al.. Chemistry and biology of cylindrols: novel inhibitors of ras farnesyl-protein transferase from Cylindrocarpon lucidum [J]. J. Org. Chem., 1996, 61(22): 7727-7737.
|
17 |
SEEPHONKAI P, ISAKA M, KITTAKOOP P, et al.. A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370[J]. J. Antibiot., 2004, 57(1): 10-16.
|
18 |
SUBKO K, KILDGAARD S, VICENTA F, et al.. Bioactive ascochlorin analogues from the marine-derived fungus Stilbella fimetaria [J/OL]. Mar. Drugs, 2021, 19(2): 46[2021-01-20]. .
|
19 |
LV J, HU D, GAO H, et al.. Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis[J/OL]. Nat. Commun., 2017, 8(1): 1644[2017-11-21]. .
|
20 |
SANMANOCH W, MONGKOLTHANARUK W, KANOKMEDHAKUL S, et al.. Helvolic acid, a secondary metabolite produced by Neosartorya spinosa KKU-1NK1 and its biological activities[J]. Chiang Mai J. Sci., 2016, 43(43): 1-11.
|
21 |
XIAO J H, ZHANG Y, LIANG G Y, et al.. Synergistic antitumor efficacy of antibacterial helvolic acid from Cordyceps taii and cyclophosphamide in a tumor mouse model[J]. Exp. Biol. Med. (Maywood), 2017, 242(2): 214-222.
|
22 |
CHEN K, YUAN Y, WANG Z, et al.. Helvolic acid attenuates osteoclast formation and function via suppressing RANKL-induced NFATc1 activation[J]. J. Cell. Physiol., 2019, 234(5): 6477-6488.
|
23 |
ARAKI Y, AWAKAWA T, MATSUZAKI M, et al.. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(17): 8269-8274.
|
24 |
GUTIÉRREZ M, THEODULOZ C, RODRÍGUEZ J, et al.. Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile[J]. J. Agric. Food Chem., 2005, 53(20): 7701-7708.
|
25 |
徐帆,朱一翔,卢艳花.烟曲霉酸的发酵培养基优化和反应器放大研究[J].中国酿造,2017,36(4):131-136.
|
26 |
谭雁鸿,李基兴,林秀萍,等.中国南海软珊瑚真菌Eupenicillium sp.DX-SER3(KC871024)的次级代谢产物研究[J].热带海洋学报,2019,38(2):43-47.
|